The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus Histoplasma capsulatum
Eszter Lázár-Molnár,* Attila Gácser,† Gordon J. Freeman,‡ Steven C. Almo,§¶ Stanley G. Nathenson,*‖** and Joshua D. Nosanchuk*†**
Author information ► Article notes ► Copyright and License information ►
This article has been cited by other articles in PMC.
Go to:
Abstract
The PD-1 costimulatory receptor inhibits T cell receptor signaling upon interacting with its ligands PD-L1 and PD-L2. The PD-1/PD-L pathway is critical in maintaining self-tolerance. In this study, we examined the role of PD-1 in a mouse model of acute infection with Histoplasma capsulatum, a major human pathogenic fungus. In a lethal model of histoplasmosis, all PD-1-deficient mice survived infection, whereas the wild-type mice died with disseminated disease. PD-L expression on macrophages and splenocytes was up-regulated during infection, and macrophages from infected mice inhibited in vitro T cell activation. Of interest, antibody blocking of PD-1 significantly increased survival of lethally infected wild-type mice. Thus, our studies extend the role of the PD-1/PD-L pathway in regulating antimicrobial immunity to fungal pathogens. The results show that the PD-1/PD-L pathway has a key role in the regulation of antifungal immunity, and suggest that manipulation of this pathway represents a strategy of immunotherapy for histoplasmosis.
Keywords: costimulation, fungal infection, programmed death-1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268192/
The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus Histoplasma
New research, clinical trial outcomes, etc.
Return to “Medical Publications”
Jump to
- Welcome to CureASPS.org!
- ↳ Guest Book
- ↳ Forum Issues and Suggestions
- News and Updates
- ↳ Personal Stories and Updates
- ↳ Success Stories
- ↳ Rest In Peace
- ↳ Anonymous Patient Updates
- ↳ Chinese group news
- ↳ Medical Publications
- ↳ Other Publications
- ↳ Sarcoma Meetings and Conferences
- ASPS Clinical Trials
- ↳ Other Clinical Trials
- ↳ COMPLETED - ARQ 197 Clinical Trial
- ↳ COMPLETED - Dana Farber Vaccine Clinical Trial (GVAX)
- ↳ Dasatinib
- ↳ Alisertib
- ↳ Cediranib
- ↳ Anlotinib
- ↳ Immune checkpoint inhibitors (ICI)
- ↳ Axitinib and Pembrolizumab (Keytruda) in Miami, US
- ↳ TECENTRIQ (atezolizumab) by Genentech
- ↳ Pfizer's PF-06801591
- ↳ Durvalumab+Tremelimumab at MDACC
- Symptoms and Diagnostics
- ↳ Symptoms
- ↳ Scan Types and Follow-Up
- ↳ Molecular Studies
- ↳ Pathology results
- Primary Tumor Treatment
- ↳ Resection
- ↳ Treatment of Non-Resectable Primary Tumor
- ↳ Radiation
- Systemic Treatment
- ↳ TKI
- ↳ Sutent (sunitinib)
- ↳ Pazopanib
- ↳ Сabozantinib (Cometriq)
- ↳ Sorafenib
- ↳ Chemotherapy
- ↳ Metronomic chemotherapy
- ↳ Temozolomide (Temodar)
- ↳ Side effects of systemic treatments
- ↳ Interferon alpha
- ↳ Immune checkpoint inhibitors ICI (PD-1 and PD-L1 targeting drugs)
- ↳ Keytruda
- ↳ Opdivo
- ↳ TECENTRIQ (atezolizumab)
- ↳ Toxicity, problems and potentiation strategies
- ↳ Treatment response criteria and evaluation/scanning problems/rare cases
- ↳ treatment discontinuation/re-treatment
- Metastatic Disease Treatment
- ↳ Local treatment modalities
- ↳ cryoablation
- ↳ Side effects/complications of the local ablations
- ↳ Radiosurgery
- ↳ Microwave ablation
- ↳ High intensity focused ultrasound (HIFU)
- ↳ Lung Metastases
- ↳ Laser assisted surgery
- ↳ Brain Metastases
- ↳ Bone Metastases
- ↳ Other Metastases
- ↳ Abdominal Metastases
- ↳ Liver metastases
- ↳ Heart Metastases
- ↳ Spinal metastases
- ↳ Adrenal metastases
- ↳ Pancreatic metastases
- Living with ASPS
- ↳ Insurance Coverage
- ↳ Second opinion from a sarcoma center
- ↳ Finanical assistance
- ↳ Diet and lifestyle
- ↳ Related studies
- ↳ Pain management
- ↳ Travel assistance