Abstract
We investigated whether Rad51 overexpression plays a role in soft tissue sarcoma (STS) chemoresistance as well as the regulatory mechanisms underlying its expression. The studies reported here show that Rad51 protein is overexpressed in a large panel of human STS specimens. Human STS cell lines showed increased Rad51 protein expression, as was also observed in nude rat STS xenografts. STS cells treated with doxorubicin exhibited up-regulation of Rad51 protein while arrested in the S-G2 phase of the cell cycle. Treatment with anti-Rad51 small interfering RNA decreased Rad51 protein expression and increased chemosensitivity to doxorubicin. Because we previously showed that reintroduction of wild-type p53 (wtp53) into STS cells harboring a p53 mutation led to increased doxorubicin chemosensitivity, we hypothesized that p53 participates in regulating Rad51 expression in STS. Reintroduction of wtp53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression. Using luciferase reporter assays, we showed that reconstitution of wtp53 function decreased Rad51 promoter activity. Deletion constructs identified a specific Rad51 promoter region containing a p53-responsive element but no p53 consensus binding site. Electrophoretic mobility shift assays verified activator protein 2 (AP2) binding to this region and increased AP2 binding to the promoter in the presence of wtp53. Mutating this AP2 binding site eliminated the wtp53 repressive effect. Furthermore, AP2 knockdown resulted in increased Rad51 expression. In light of the importance of Rad51 in modulating STS chemoresistance, these findings point to a potential novel strategy for molecular-based treatments that may be of relevance to patients burdened by STS. [Mol Cancer Ther 2007;6(5):1650–60]
http://mct.aacrjournals.org/content/6/5/1650
Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells:a role for p53/activator protein
Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells:a role for p53/activator protein
Last edited by D.ap on Fri Feb 01, 2019 8:59 am, edited 1 time in total.
Debbie
Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies
Abstract
Three decades of p53 research have led to many advances in understanding the basic biology of normal and cancer cells. Nonetheless, the detailed functions of p53 in normal cells, and even more so in cancer cells, remain obscure. A major breakthrough is the realization that mutant p53 has a life of its own: it contributes to cancer not only through loss of activity, but also through gain of specific ‘mutant functions’. This new focus on mutant p53 is the rationale behind the meeting series dedicated to advances on mutant p53 biology. This review provides an overview of results presented at the Fourth International Workshop on Mutant p53, held in Akko, Israel in March 2009. New roles and functions of p53 relevant for tumor suppressions were presented, including the regulation of microRNAs networks, the modulation of cell–stroma interactions and the induction of senescence. A main focus of the meeting was the rapidly growing body of knowledge on autonomous properties of mutant p53 and on their oncogenic ‘gain of function’ impact. Importantly, the meeting highlighted that, 30 years after p53 discovery, research on mutant p53 is entering the clinical and translational era. Two major steps forward in this respect are a better understanding of the active mechanism of small drugs targeting mutant p53 in tumor cells and an improved definition of the prognostic and predictive value of mutant p53 in human cancer.
https://www.nature.com/articles/cgt201063
Three decades of p53 research have led to many advances in understanding the basic biology of normal and cancer cells. Nonetheless, the detailed functions of p53 in normal cells, and even more so in cancer cells, remain obscure. A major breakthrough is the realization that mutant p53 has a life of its own: it contributes to cancer not only through loss of activity, but also through gain of specific ‘mutant functions’. This new focus on mutant p53 is the rationale behind the meeting series dedicated to advances on mutant p53 biology. This review provides an overview of results presented at the Fourth International Workshop on Mutant p53, held in Akko, Israel in March 2009. New roles and functions of p53 relevant for tumor suppressions were presented, including the regulation of microRNAs networks, the modulation of cell–stroma interactions and the induction of senescence. A main focus of the meeting was the rapidly growing body of knowledge on autonomous properties of mutant p53 and on their oncogenic ‘gain of function’ impact. Importantly, the meeting highlighted that, 30 years after p53 discovery, research on mutant p53 is entering the clinical and translational era. Two major steps forward in this respect are a better understanding of the active mechanism of small drugs targeting mutant p53 in tumor cells and an improved definition of the prognostic and predictive value of mutant p53 in human cancer.
https://www.nature.com/articles/cgt201063
Debbie