Very interesting article became available in full text in the Cancer Research J.
Corresponding Author:
Rakesh K. Jain, Steele Laboratory, COX-734, Massachusetts General Hospital
Glioblastoma Recurrence after Cediranib Therapy in Patients: Lack of “Rebound” Revascularization as Mode of Escape
http://cancerres.aacrjournals.org/conte ... 9.abstract
they were looking into what happens to the Glioblastoma (brain tumor) after it escapes the cediranib treatment, becomes resistant to it and regrows.
They found that cediranib-treated GBMs showed high levels of PDGF-C (platelet-derived growth factor C) and c-Met expression and infiltration by myeloid cells, which may potentially contribute to resistance to anti-VEGF therapy. The treated tumors switch their growth pattern after anti-VEGF therapy—characterized by lower tumor cellularity in the central area, decreased pseudopalisading necrosis, and blood vessels with normal molecular expression and morphology—without a second wave of angiogenesis.
The data for the article is not fresh - it is from Nov. 2010 and I was wondering if there is something new avail. from the same lab by now. Our organization has established ties with the Harvard university and Dana Farber hospital. What if the pathways of resistance are the same regardless of the type of primary and is just caused by the treatment itself so then it would open some possibilities to explore for the ASPS patients who's tumors escaped cediranib such as c-Met or PDGF-C inhibitors (I do not even know if there are any avail. off label)?
Cediranib resistance pathways research article
One of the most promising trials currently open.
Jump to
- Welcome to CureASPS.org!
- ↳ Guest Book
- ↳ Forum Issues and Suggestions
- News and Updates
- ↳ Personal Stories and Updates
- ↳ Success Stories
- ↳ Rest In Peace
- ↳ Anonymous Patient Updates
- ↳ Chinese group news
- ↳ Medical Publications
- ↳ Other Publications
- ↳ Sarcoma Meetings and Conferences
- ASPS Clinical Trials
- ↳ Other Clinical Trials
- ↳ COMPLETED - ARQ 197 Clinical Trial
- ↳ COMPLETED - Dana Farber Vaccine Clinical Trial (GVAX)
- ↳ Dasatinib
- ↳ Alisertib
- ↳ Cediranib
- ↳ Anlotinib
- ↳ Immune checkpoint inhibitors (ICI)
- ↳ Axitinib and Pembrolizumab (Keytruda) in Miami, US
- ↳ TECENTRIQ (atezolizumab) by Genentech
- ↳ Pfizer's PF-06801591
- ↳ Durvalumab+Tremelimumab at MDACC
- Symptoms and Diagnostics
- ↳ Symptoms
- ↳ Scan Types and Follow-Up
- ↳ Molecular Studies
- ↳ Pathology results
- Primary Tumor Treatment
- ↳ Resection
- ↳ Treatment of Non-Resectable Primary Tumor
- ↳ Radiation
- Systemic Treatment
- ↳ TKI
- ↳ Sutent (sunitinib)
- ↳ Pazopanib
- ↳ Сabozantinib (Cometriq)
- ↳ Sorafenib
- ↳ Chemotherapy
- ↳ Metronomic chemotherapy
- ↳ Temozolomide (Temodar)
- ↳ Side effects of systemic treatments
- ↳ Interferon alpha
- ↳ Immune checkpoint inhibitors ICI (PD-1 and PD-L1 targeting drugs)
- ↳ Keytruda
- ↳ Opdivo
- ↳ TECENTRIQ (atezolizumab)
- ↳ Toxicity, problems and potentiation strategies
- ↳ Treatment response criteria and evaluation/scanning problems/rare cases
- ↳ treatment discontinuation/re-treatment
- Metastatic Disease Treatment
- ↳ Local treatment modalities
- ↳ cryoablation
- ↳ Side effects/complications of the local ablations
- ↳ Radiosurgery
- ↳ Microwave ablation
- ↳ High intensity focused ultrasound (HIFU)
- ↳ Lung Metastases
- ↳ Laser assisted surgery
- ↳ Brain Metastases
- ↳ Bone Metastases
- ↳ Other Metastases
- ↳ Abdominal Metastases
- ↳ Liver metastases
- ↳ Heart Metastases
- ↳ Spinal metastases
- ↳ Adrenal metastases
- ↳ Pancreatic metastases
- Living with ASPS
- ↳ Insurance Coverage
- ↳ Second opinion from a sarcoma center
- ↳ Finanical assistance
- ↳ Diet and lifestyle
- ↳ Related studies
- ↳ Pain management
- ↳ Travel assistance