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Abstract

Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line
(ASPS-1), was analyzed jointly with patient ASPL-TFE3 (t(X;17)(p11;q25)) fusion transcript data to identify disease-specific
pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using
conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS.
These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The
concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data
provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was
exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and
their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17)(p11;q25) translocation
include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support
current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in
pathways involved in the cell cycle (CHK1), cell adhesion (ARHGD1A), cell division (CDC6), control of meiosis (RAD51L3) and
mitosis (BIRC5), and chemokine-related protein tyrosine kinase activity (CCL4).
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Introduction

Identifying disease-specific genetic signatures offers the potential
for selecting therapeutic targets and discovering small molecules
that affect the roles of these targets in cancer cell survival. In
practice, disease-specific genetic signatures typically originate from
examination of microarray gene expression readouts using
diseased cells and applications of in silico tools for extracting
important (i.e. signature) gene subsets [1–3] and pathways
(IPA(IngenuityRSystems www.ingenuity.com, GSEA [4,5] and
DAVID [6]). Typically cells used for microarray analysis represent
a relatively homogeneous population. Less typical, yet not
infrequent, cases involve microarray readouts from patient tumor
biopsies [7,8] where difficulties in assigning disease-specific genetic
signatures arise from cellular heterogeneity associated with the
tumor/non-tumor composition within each tissue sample. In an
effort to analyze genetic readouts from heterogeneous samples and
propose potential therapeutic targets, a multi-step analytical
methodology is proposed to collectively analyze related, yet
different, sets of microarray data. The first step in this
methodology identifies disease-specific genes, and their associated
biochemical pathways, using pooled microarray readouts from
patient tissue biopsies and from an isolated tumor cell. The joint
analysis of biopsy and tumor cell microarray readouts offers the

opportunity to distinguish the genetic role of genes associated with
the tumor microenvironment from that of genes associated with
the isolated tumor cell. Genes derived from these readouts, and
their associated pathways, serve to identify disease-specific features
that are assumed, in part, to affect in situ tumor cell survival. The
second component of this methodology analyzes the individual (i.e.
unpooled) microarray readouts from individual patient tissue
biopsies to determine clusters of genes, and their associated
pathways, that exhibit consistent expression patterns for these
patients. These clustering results serve as a check of the isolated
tumor cell and pooled in situ derived disease-specific genetic
signatures that were found in the first step of the methodology.
The third step in this methodology provides a bridge for
connecting individual patient gene expression signatures, identified
in step two, with patient-derived RT-PCR measures of a putative
disease-specific marker. An integral component of this last step is
the application of a novel linear model, using microarray signal
intensities, to assist in interpreting microarray readouts derived
from heterogeneous patient biopsies. The over-arching theme of
this methodology is to construct a means to jointly analyze
microarray readouts from pooled and individual tissue biopsies,
with microarray readouts from an isolated tumor cell, combined
with patient-derived RT-PCR measures of a diagnostic marker, to
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identify a small set of genetic features that collectively span this
data and may have potential as therapeutic targets.

ASPS is an exceedingly rare chemo-resistant sarcoma that
encompasses less than 1% of all soft tissue sarcomas. Originally
described in 1952 [9], this tumor is found primarily in adolescents
and young children, is characterized by periods of latency,
extremely slow growth and multi-organ metastasis with a partiality
to the lung and brain. ASPS is resistant to both radiation and
standard chemotherapeutic regimens [10–12] and exhibits a non-
reciprocal chromosomal translocation, der(17)t(X;17)(p11;q25)
[13]. Seminal work by Ladanyi and co-workers [14] indicate that
this translocation fuses the C-terminal region of transcription
factor TFE3, located at Xp11, to the N-terminal region of the
ASPL gene at 17q25. Alternative fusion junctions have been
observed and result in expression of two tumor specific fusion
transcripts, ASPL-TFE3 type 1 and type 2 and their chimeric
proteins, which are thought to function as transcription factors. In
an effort to identify new targets for ASPS, in-vivo [15] and in-vitro
[16] models of the disease have been recently developed. The
xenograft model of ASPS, established in immunocompromised
mice, maintains characteristics consistent with the original ASPS
tumor including tumor histology, expression of the ASPL-TFE3
type 1 fusion transcript and the ASPL-TFE3 type 1 fusion protein,
as well as maintenance of the t(X;17)(p11;q25) translocation
characteristic of ASPS. The ASPS xenograft model exhibits stable
expression of many up-regulated ASPS gene transcripts including
those involved in angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-
MET, VEGF, TIMP-2), cell proliferation (PRL, PCSK1),
metastasis (ADAM9) as well as the transcription factor BHLHB3
and the muscle specific transcripts TRIM63 and ITGb1BP3, and
is characterized by the development and maintenance of a
functional vascular network, a clinical feature of this highly
vascular sarcoma. ASPS-1, the cell line developed from the
xenograft tumor [16], also expresses the ASPL-TFE3 type 1 fusion
transcript and the ASPL-TFE3 type 1 fusion protein, the
t(X;17)(p11;q25) translocation characteristic of ASPS and many
of the up-regulated ASPS gene transcripts identified in the
xenograft model. ASPS-1 retains the ability to produce highly
vascularized ASPS tumors in NOD.SCID/NCr and SCID/NCr
mice. These tumors express selected ASPS markers similar to
those of the original patient tumors as well as to the xenograft
ASPS tumor.

The proposed methodology will be used to identify ASPS-
specific genetic signatures from i) patient microarray readouts
using tissue biopsy samples of primary and metastatic tumors of
alveolar soft part sarcoma (ASPS) [17], ii) an immortalized cell line
developed from a lymph node metastasis of one patient [16], and
iii) biopsy-derived RT-PCR data from the ASPL-TFE3 fusion
transcript used in the diagnosis of this disease. The analytic
workflow consists of jointly analyzing microarray data from the
pooled patient biopsies and the isolated tumor cell, ASPS-1, and
applying Principal Component Analysis (PCA) to determine a
subset of genes that characterize this data. This subset of genes is
then subjected to two methods of clustering, hierarchical for the
ASPS-tissue and ASPS-1 data and Self-Organizing Maps (SOMs)
for these genes’ expressions across the individual (i.e. non-pooled)
patient tissue data. The results of these independently conducted
clustering analyses are then examined collectively for the
occurrence of genes, and their pathways, that consistently exhibit
patterns of over and under expression across this data. Genes, and
their pathways, jointly indicated in these parallel analyses are
further analyzed by comparisons to the patient-derived RT-PCR
measurements of the ASPL-TFE3 fusion transcript. This step uses
a novel algebraic model to identify gene subsets, and their

associated pathways, that also bear a correlative relationship with
patient measures of the ASPL-TFE3 fusion transcript. Patient gene
expressions negatively correlated with patient transcript levels
represent controls for evaluating the cellular response to ASPS
translocation, while patient gene expressions positively correlated
with patient transcript levels are proposed as potential therapeutic
targets.

Collectively these results identify 75 potential ASPS-specific
therapeutic targets that appear in 29 GSEA pathways. The ASPS-
specific GSEA pathways are nearly equally divided between cell-
cycle related processes, with inclusion of many of the current
putative ASPS target genes, including MET and FLT1, and
processes related to the tumor stromal microenvironment, with an
emphasis on pathways and genes involved in immune surveillance,
chemokines and focal adhesion. These results establish a strong
interdependency for tumor cell survival on the intrinsic pathways
driving cell proliferation and on the stromal environment. One
novel component of this interdependency finds a connection
between cell-cycle related tyrosine kinase pathways and chemo-
kines involved in controlling their kinase activity; an indication
that therapeutic strategies aimed at cell-cycle related genes and
microenvironment related genes may be beneficial. Collectively
these results support a broader range of potential ASPS-specific
therapeutic targets than had been previously considered for the
treatment of this chemo-resistant sarcoma.

Methods

Tumor Acquisition
ASPS tumors were obtained from surgery, following prior

informed written consent, under National Cancer Institute clinical
research protocol 05-C-N138, approved by the U.S. National
Cancer Institute (NCI) Institutional Review Board (IRB). The NCI
IRB, in conjunction with the NCI ethics committee, reviewed the
protocol annually and approved all tumor acquisitions and
progress of the protocol. The Alliance Against Alveolar Soft Part
Sarcoma (TAAASPS) assisted in the acquisition of ASPS tumors
utilized in this study. The research protocol followed is in
compliance with the Helsinki Declaration of conduct of research
using human patients. A detailed description of the patient/tumor
characteristics utilized in this present study, including the
methodologies for ASPS diagnosis, isolation of RNA, reverse
transcription and microarray data acquisition have been previ-
ously described [17].

Quantification of ASPL-TFE3 Fusion Transcripts by Real-
Time RT-PCR

SYBR Green chemistry was used to detect primer specific
amplicons. Reaction volume (20 ml) included 10 ml Quantitect
SYBR Green PCR mastermix (Qiagen, Valencia, CA), in DNase
free water (6 ml), 2 ng cDNA (2.5 ml) and 4 mM of forward and
reverse primers (1 ml each). The 24 bp forward primer (TTCA
GCTA AGTT GCCG AAGT CCCT) corresponds to nt 893–915
in exon 7 of ASPL. The reverse primer (TGAA TCGC CTGC
GACG CTCA ATTA) corresponds to nt 1296–1319 in exon 7/8
of TFE3. Reactions were performed in triplicate and universal 18S
RNA primers (Ambion, Austin, TX) were used to normalize
cDNA amplification. The fluorochrome ROX, included in the
PCR mastermix, was used as a passive reference. Reactions were
performed using an ABI7500 thermocycler (Applied Biosystems,
Step One Plus Real Time PCR System, Foster City, CA). Cycling
conditions consist of a single 10 minute/95uC activation step
followed by 45 cycles of 95uC/15 seconds, 60uC/60 seconds and
72uC/60 seconds with fluorescence measurements taken in the
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elongation step of each cycle. Fold changes in expression were
calculated manually from Ct values.

Statistical Analysis
The goal of the analytic workflow, shown schematically in

Figure 1, is to identify a subset of gene expressions, derived jointly
from pooled patient biopsies, individual patient biopsies and an
immortalized, ASPS-1, tumor cell, that reveal a consistent picture
of ASPS-specific differentially expressed genes and their associated
pathways. The strategy first trims the initial set of gene expressions
to identify candidate genes that discriminate the pooled patient
microarray readouts from the cell-based microarray readouts.
Next, an analysis of only these discriminating genes is conducted,
in parallel, using the pooled biopsy and cell-based microarray data
and, separately, the individual patient microarray data. The
following section provides further details of these steps. Additional
information appears in the legend to Figure 1.

Data trimming of the initial 54,675 mRNA expression
measures, done in duplicate, for the patient biopsy and ASPS-1
tumor cell microarray measurements, selected only instances
where present (P) calls existed for each gene and its corresponding
universal mRNA duplicates. The remaining 17,698 gene expres-
sion measures are log transformed, averaged across their replicates
and normalized to universal reference RNA, which consisted of a
mixture of RNAs from non-tumor adult male and female human
tissues. Data processing on this trimmed dataset is completed in
two steps. First, patient data is pooled to yield an average gene
expression for these ,18 k genes derived from ASPS tissue

samples. This data is compared to the corresponding gene
expression measures derived from ASPS-1. The pooled patient
ASPS gene expression data is referred to hereafter as ASPS-tissue
samples, while the cell derived dataset is referred to, as noted
earlier, as ASPS-1.

A plot of the ,18 k gene expressions derived from pooled
ASPS-tissue (y-axis) versus ASPS-1 gene expressions (x-axis)
appears in the top panel of Figure 2. Over and under expressed
genes within the pooled ASPS-tissue samples are assumed to
reflect aggregate measures of gene expression from normal and
tumor cells, while extremes in gene expressions from the ASPS-1
sample are assumed to represent only the tumor subpopulation.
The inherent overlap of tumor cells in both populations is
consistent with the correlated nature of their gene expressions, as
evidenced by the strong band running diagonally across the image
in the top panel of Figure 2. Each subpopulation is comprised of
genes over and under expressed, relative to universal mRNA and,
more importantly, relative to each other. Principal Component
Analysis (PCA) is a statistical procedure that converts a set of
correlated variables into sets of uncorrelated variables, called
principal components (PCs). The number of principal components
is less than or equal to the number of original variables, which for
the dataset used here consists of two variables; gene expressions
derived from ASPS-tissue samples and ASPS-1. This transforma-
tion assigns the 1st PC to data associated with the highest variation,
with each succeeding PC having the highest variance possible
under the constraint that it is not correlated with the preceding
PCs. The 1st PC for this dataset is displayed as the dark line

Figure 1. Data Analysis Workflow. The expression of 54,675 genes, done in duplicate, was measured for ASPS tissue biopsies and the ASPS-1
tumor cell. Selecting only present (P) calls trimmed this starting set to 17,698 gene expressions. Next, these ,18 k candidate genes were analyzed
using Principal Component Analysis (PCA). PCA identified 1244 genes that distinguished the pooled patient data from the ASPS-1 tumor cell data.
From this point forward these 1244 genes were analyzed, in parallel, for the pooled patient/ASPS-1 tumor cell data (left-most path), and the individual
patient gene expressions (right-most path). The left-most path used conventional hierarchical clustering to identify gene clusters. Clustered genes
were then used to reveal a set of ASPS-specific pathways. The right-most path analyzed the individual patient measures of these same 1244 gene
expressions, using self-organizing maps (SOMs), to cluster genes according to similarities in gene expressions across patient samples. These gene
clusters were also analyzed to identify their set of ASPS-specific pathways. The final step in this process selected only pathways and their constituent
genes that are shared amongst the ASPS-specific pathways identified from each parallel analyses.
doi:10.1371/journal.pone.0048023.g001
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running diagonally in the top panel of Figure 2. This line passes
through the majority of the data, and reflects the highly correlated
(i.e. expected) nature of this dataset. Standard PCA analysis
determines the fraction of the variance associated with each PC.
For the data displayed here, 91% of the variation is associated with
the 1st PC; leaving the remaining 9% of variation not accounted for
by the correlation implicit in this data set. The 2nd PC runs
perpendicular to the 1st PC. Data associated with the 1st PC are
assumed, herein, to represent background genes with proportional
expressions across both the pooled ASPS-tissue and ASPS-1
samples. As such, these genes represent cases where the pooled
ASPS-tissue and ASPS-1 expressions are not different, and thus
less interesting. Genes with differences in expressions between
these samples are assumed to be associated with the 2nd PC. These
genes are selected by eliminating genes within the most densely
populated regions flanking the 1st PC. A grid-based approach was
used to determine the number of nearest neighbors within each
cell of the grid. Cells with neighbor counts above the 90th

percentile of counts for all grid cells were eliminated, to yield the
1244 genes with differential expressions that were not associated
with the 1st PC (see lower panel Figure 2). These remaining
differentially expressed genes can be further stratified according to
their relative differential expression in pooled ASPS-tissue versus
ASPS-1. These gene expressions reflect differences resulting from
samples derived from ASPS-1 versus samples derived from pooled
patient samples. The lower panel in Figure 2 displays, in red,
genes over expressed in pooled ASPS-tissue relative to ASPS-1,
and in green genes relatively over expressed in ASPS-1 versus
pooled ASPS-tissue samples.

Pathway Analysis
The 1244 differential genes associated with the remaining 9% of

variation are analyzed using Gene Set Enrichment Analysis
(GSEA). This publically available tool (http://www.broadinstitute.
org/gsea/) calculates a statistical probability for the likelihood of
gene pairs (or higher) occurring randomly within a set of curated
pathway annotations [5,18]. The GSEA results for gene subsets is
reported in tabular form to include the HUGO name, the identity
of the curated pathway annotation, brief descriptions of each
pathway and the statistical significance of this finding. In lieu of
reporting GSEA results in tabular form, abridged pathway
descriptions will appear in the text. All pathways reported in this
analysis achieve a statistical significance below 0.05. The complete
set of GSEA results appear in Figures S1 and S2.

SOM Clustering
The differential gene expressions for the filtered genes for each

patient sample consists of 1244 gene expressions for 7 patients
done in replicate (12446762). Each record represents the signal
associated with a gene’s expression as measured in the ASPS tissue
samples. Pooling of this dataset was used above to derive the subset
of trimmed genes displayed in the lower panel of Figure 2. The
SOM analysis [19] examines the individual (i.e. non-pooled)
patient data for the existence of gene expression patterns shared
across all patient samples. The underlying assumption is that each
tissue sample’s tumor/non-tumor heterogeneity is preserved, thus
fixing the relative differential gene expressions in that sample. In
other words, if a patient’s ASPS tissue consists of 30% tumor and
70% non-tumor, these fractions apply to all gene measurements
for that patient. Consequently the extent of heterogeneity remains
constant within each patient’s tissue sample. Based on this
assumption, the profile of each gene’s differential expression
across all patients represents an ASPS-specific tissue signature for
the seven patients analyzed here. Gene clusters found from the

PCA analysis of pooled ASPS-tissue and individual ASPS-tissue
expressions that are also found in the SOM clustering of individual
patient gene expressions are indicative of a consistent set of
disease-specific pathways and genes. The existence of a consistent
set of genes provided reciprocal support for their inclusion as
disease-specific genes. Stated differently, gene clusters identified
from the PCA-derived subsets of pooled patient tissue samples and
ASPS-1 should also cluster on the basis of similarities in gene
expression patterns derived from individual patient biopsies. This
type of cross checking provides an internal consistency check for
identifying ASPS-specific genes and their pathways.

Figure 2. Top Panel: Scatter plot of pooled ASPS-tissue (y-axis)
versus ASPS-1 (x-axis) differential gene expression measure-
ments. Data trimming (see Methods: Statistical Analysis) reduced the
original 54,798 measurements to 17,698 differentially expressed genes.
The diagonal line represents the first principal component (1st PC) from
PCA analysis and accounts for 91% of the variation in this data set. The
lower panel displays the 1244 gene expressions not associated with the
1st PC. Points in red and green, respectively, correspond to differential
expressions relatively higher in the pooled ASPS-tissue versus ASPS-1
gene expressions, and vice-versa. Consistent with the PCA analysis, the
1st PC exactly bisects the pooled ASPS-tissue versus ASPS-1 datasets.
doi:10.1371/journal.pone.0048023.g002
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Strategy for Assessing Gene Expression Variations in
Tissue Samples from Different Patients

Many cancers, including ASPS, are characterized by chromo-
somal translocations, resulting in genetic defects involving
expression of a fusion gene and protein that can be recognized
as a tumor marker. As such, the expression of the fusion protein is
a characteristic property of the tumor, with non-tumor cells not
expressing this protein. In the consideration of tumor samples
from many patients, as well as from different tumor locations on
the same patient, the genetic signature of such samples, as
measured by gene expression from microarrays, can and will be
quite varied for many different reasons. As noted earlier, excised
or biopsied tissue samples from tumors contain both tumor cells
and non-tumor cells. Further confounding the problem is that
expression of any particular gene can be different in the non-
tumor tissue versus tumor tissue. Both the amount of tumor and
the gene expressions are a priori unknown quantities. The strategy
proposed here uses a linear, algebraic model to extract, from
patient microarray data, gene expression patterns that are
representative of the underlying genetic defect.

The strategy assumes that only one tumor type exists within a
patient’s tissue sample. Microarray analysis assumes that the raw
channel intensity signal, Ii,k, for a particular patient tumor, i, and
gene k, is proportional to the total amount of mRNA in the
patient’s tissue sample, which can be formally written as:

Ii,k~aEtumor,i,kfizaEnon{tumor,i,k(1{fi) ð1Þ

where a is the constant that converts the amount of RNA to a
detectable signal, Etumor,i,k is the RNA expression of gene k in
patient i’s tumor cell portion of the sample, fi is the fraction of the
sample that contained tumor cells, and Enon-tumor,i,k is the RNA
expression of the same gene k in patient i’s non-tumor cell portion
of the sample.

Measuring the expression of a reference RNA sample for each
microarray, done simultaneously on each microarray, the total
signal intensity, Iref,k, stemming from the RNA expression of gene k
in the reference sample can be expressed as:

Iref ,k~aEref ,k ð2Þ

Where a is the constant that converts the amount of mRNA to a
detectable signal, as above, and Eref,k is the mRNA expression of
gene k in the reference sample.

The gene expression ratio, defined as:

vri,kw~Ii,k=Iref ,k ð3Þ

measures the expression of gene k in the tumor sample relative to
the reference sample. The expression ratio ri,k, for gene k of patient
i, as referenced to the non-tumor cells of the same sample is:

ri,k~Etumor,i,k=Enon{tumor,i,k ð4Þ

which is not necessarily the same as the ,ri,k.. To illustrate this
potential difficulty, consider the case where the reference mRNA,
Eref, is the same as the mRNA derived from non-tumor cells in the
patient sample, Enon-tumor. The two expression ratios can now be
expressed as a function of the fraction of tumor cells in the patient
sample:

vri,kw~Ii,k=Iref ,k~(ri,k{1)fiz1 ð5Þ

This relationship finds that the two expression ratios ,ri,k. and ri,k
are identical only if fi is 1, i.e. if the entire excised tumor sample
contains nothing but tumor cells. If fi is different from 1 the two
ratios deviate from each other, e.g. for a fi of 0.1 and a measured
,ri,k. of 10, ri,k is (1021)/0.1+1 = 91. Consequently, a sample
from a patient’s tumor with varying f finds the measured ratios to
vary dramatically even though the expression of the gene is the
same.

Application of Quantitative RT-PCR to the Known Tumor
Signature Gene

When a known genetic defect causes a marker fusion gene to be
expressed, different tumor samples can be characterized by
performing quantitative RT-PCR on the fusion gene transcript
using oligo-primers that span the fusion site. The amount of fusion
transcript varies for each tumor, but can be referenced to a
specific, but arbitrary patient. As is done with gene expressions, the
observable fusion amount, Ri, is related to the tumor fraction in
the sample. Assuming that the measure of fusion transcript in the
tumor portion of the tissue sample is the same across all tumor
cells, the fusion fraction can be written as

fi~
1

b
Ri ð6Þ

where 1/b is the proportionality constant that relates the observed
normalized RT-PCR values to the absolute fraction in the sample.
The properties of the expression system can be examined by
graphing the single channel observables Ii,k and Ri versus each
other, i.e.

aEtumor,i,kfizaEnon{tumor,i,k(1{fi) versus bfi ð7Þ

Using the expression ratio rik, for gene k of patient i, as defined
above, the left side of the definition of intensity can be expressed as
a linear equation in fi:

(ri,k{1)aEnon{tumor,i,kfizaEnon{tumor,i,k or

½(ri,k{1)fiz1$aEnon{tumor,i,k

ð8Þ

Since all constants in equation (9) are positive, the important part
of this linear equation is the slope, and in particular the quantity
that determines its sign, (ri,k21). When a graph of gene fusion
transcript versus gene expression across all tumor types exhibits a
positive slope, then

ri,kw1 ð9Þ

i.e. the expression ratio of the gene is enhanced in the tumor tissue,
and likewise if the slope is negative, the gene is expressed less in the
tumor tissue. In practice the linear equation Ii,k(Ri) = ak+bkRi is
evaluated, where ak, bk are constant for each gene and
independent of the tumor sample. The actual constants determin-
ing the proportions and conversions do not need to be evaluated.
For purposes of the study conducted here, the analysis simply
reduces to identifying instances of a non-zero slope between
patient gene expressions and ASPL-TFE3 fusion transcript levels.
This is equivalent to identifying patient gene expressions that are
positively or negatively correlated with the patient’s fusion
transcript levels. This observation is rather remarkable in that
the analysis avoids the issue of how much of the tissue sample
originates from tumor cells. If the observed gene expression data
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originates from two or more different tumor cell populations the
analysis could be amended to take this into account. The method,
however, is not suitable to estimate quantitative ratios, as the
experimental variations are not cancelled out using standard ratio
techniques. However, it is a powerful qualitative method, when the
goal is to identify important gene subsets. Gene expressions
determined from this approach could be verified with an
independent experiment such as quantitative RT-PCR, although
a quantitative measure may also be inherently difficult due to
variations of the tumor-cell content in sampled tissue specimens.
An integral component of this analysis is relating key component
of this.

The importance of this result in the context of identifying ASPS-
specific genes and associated pathways has profound implications
for the methodology proposed here. Specifically, correlative
measures of differential gene expressions across patient samples
versus RT-PCR measures of ASPL-TFE3 fusion transcript in these
same patient samples, represents a valid means of assessing ASPS-
important gene subsets and their associated pathways. An
additionally important component of this analysis is that it
provides a means to integrate the earlier-derived gene cluster
results, based on pooled tissue and ASPS-1 gene expressions, with
the RT-PCR data. If the disease-specific genes derived from each
part of the analysis were not consistent, there would be no basis for
extending the results into genes with expressions correlated with
the TFE3-ASPL transcript levels.

Results

The results are presented sequentially, beginning with the
clustering results for the pooled patient ASPS-tissue versus ASPS-1
trimmed gene sets (n = 1244), followed by the clustering results of
expressions for these same 1244 genes using the individual (i.e.
non-pooled) patient tissue samples. Reporting consists of providing
GSEA pathway results for clustered gene subsets and collectively
integrating these results to identify common over and under
expressed genes and pathways. The guiding principle is to use
each data mining approach to converge on a set of ASPS-specific
signature genes and their associated pathways.

GSEA Results for pooled ASPS-tissue and ASPS-1 genes
The pooled ASPS-tissue versus ASPS-1 PCA divided the 1244

gene expressions (i.e. trimmed dataset) into 542 genes lying above
and 702 genes lying below the 1st PC (see Figure 2). Genes above
the 1st PC represent relatively greater gene expression in ASPS-
tissue samples when compared to ASPS-1. GSEA results for the
topmost scoring GO, KEGG or Biocarta pathways for genes over
expressed in the ASPS-tissue partition are dominated by pathways
associated with the extracellular region;

i. proteinaceous extracellular matrix; GO:0005578.

ii. extracellular matrix; GO:0031012.

iii. extracellular region and extracellular region part;
GO:0044421 and GO:0005576.

and pathways involved in cellular maintenance and
development;

iv. protease inhibitor activity; GO:0030414.

v. cellular morphogenesis during differentiation; GO:0000904.

Together these GSEA pathways point to genes that are involved
in maintaining a stable cellular environment. The complete set of

GSEA pathways and their 45 pathway genes from these 542 genes
are displayed in Figure S1.

The GSEA results for the genes having expression greater in
ASPS-1 versus ASPS-tissue samples (e.g. below the 1st PC in
Figure 2) identify pathways associated with;

i. cell cycle phase; GO:0022403.

ii. cell cycle; KEGG cell cycle

iii. meiotic cell cycle; GO:0051321l.

iv. m_phase; GO:0000279.

v. meiotic recombination; GO:0007131.

vi. meiosis_I; GO:0007127.

vii. cell cycle checkpoint; GO:0000075.

viii. DNA recombination; GO:0006310.

ix. homologous recombination; KEGG Homologous recombi-
nation

x. p53 signaling pathway; KEGG p53 signaling pathway

These genetic signals point to pathways that support cellular
maintenance and growth. The complete set of GSEA pathways
and their 24 pathway genes derived from these 702 genes are listed
in Figure S2.

GSEA Results for clustered subsets of pooled ASPS-tissue
and ASPS-1 genes

The results in the two preceding paragraphs provide a coarse
picture of the GSEA pathways and their associated genes
identified from a global assessment of the 1244 genes in pooled
ASPS-tissue and ASPS-1 that are not associated with the 1st PC.
To obtain a more refined perspective of ASPS-specific pathways,
simple hierarchical clustering can be used to identify gene subsets
within this dataset. Figure 3 (upper panel) displays the
dendrogram (Euclidian distance metric and Wards clustering) for
the pooled ASPS-tissue samples. Clustering divides the 542 genes
in the complete ASPS-tissue set into two groups, comprised of
three and two sub-clades, respectively (see Figure 3, lower panel,
for sub-clade members). The GSEA pathways and their associated
genes for all dendrogram meta-clades (shortened hereafter to
DEND meta-clade to distinguish these results from the SOM
results to follow where meta-clades will be referred to as SOM
meta-clades) are listed in Table S1. DEND meta-clade A, colored
black in Figure 3 (lower panel), has GSEA pathways comprised
of the extracellular region, Biocarta ASHO and KEGG viral
myocarditis. Here hemoglobin (HBA1, HBA2), myosin (MYH11)
and collagen (COL4A5, COL6A3) related pathway genes would
be expected from tissue-derived samples. The clade associated
with the color green (DEND meta-clade B) identifies GSEA
pathways for enzyme inhibitory and regulatory activity, mem-
brane and cell fractions and cytosol. These pathways are also
consistent with samples taken from ASPS tissue. Noteworthy in
this and the previous set of genes (DEND meta-clade A) is that
nearly all of these pathway genes are relatively under expressed
when compared to universal RNA (i.e. universal RNA normalized
expression values below 1.0). Despite the fact that these genes are
relatively under expressed compared to universal RNA, there
normalized expressions are greater than observed for the ASPS-
tissue samples, as these measures should be largely devoid of these
genes. The clade associated with the color red (DEND meta-clade
C) identifies the GSEA pathways: positive regulation of cell
proliferation, extracellular region, chemokine activity, immune
response, inflammatory response and defense response. Notewor-
thy in their sets of pathway genes is the appearance of
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thrombospondin and various chemokines, whose presence has
been shown to inhibit neovascularization and suppress tumor
growth in breast cancer xenografts [20]. The genes associated with
the color cyan (DEND meta-clade D) identify GSEA pathways:
sarcomere, myofibril, contractile fiber part and structural constit-
uent of muscle (genes TTN and NEB), and heparin binding,
carbohydrate binding and glycosaminoglycan binding (genes
POSTN and MDK). Genes associated with the color magenta
(DEND meta-clade E) identify GSEA pathways for focal adhesion
and basolateral membrane, which include genes from the integrin
family, vascular endothelial growth factors and membrane
proteins. The gene subsets for GSEA pathways associated with
these 3 latter DEND meta-clades (C, D and E) have expressions
above their universal mRNA reference (i.e. normalized expressions
greater than 1.0). Furthermore, the genes associated with DEND

meta-clade D represent the most over expressed genes in this set; a
result consistent with previous studies [17].

Figure 4 (upper panel) displays the dendrogram (Euclidian
distance metric and Wards clustering) for clustering of ASPS-1
gene expressions. Clustering, on the basis of expression levels,
divides this gene set into three groups, each comprised of two sub-
clades (see Figure 4, lower panel, for sub-clade members). The
clade associated with the color red (DEND meta-clade H)
represents a special case, where the sub-clade colored in pink
represents the portion of this gene subset that has expression values
below universal RNA. All other meta-clades have gene expressions
above universal RNA (i.e. greater than 1.0 on the x-axis). GSEA
pathway results for all genes associated with meta-clade H are
listed in Table 1. These comprise numerous pathways associated
with cellular growth. The format of Table 1 includes GSEA
results for the probability of the occurrence of two or more genes

Figure 3. Top Panel; Dendrogram for pooled ASPS-tissue Gene Expressions. Clades are colored to identify samples associated with five
meta-clades (DEND meta-clades A, B, C, D and E). The members of DEND meta-clade A with ASPS-tissue values higher than universal RNA are
displayed in gray. All other meta-clades are comprised of genes with expression values above universal RNA (i.e. values above 1.0 on the y-axis).
Bottom Panel, ASPS-tissue versus ASPS-1 scatter plot where cluster memberships are color-coded to match the meta-clade dendrogram displayed in
top panel.
doi:10.1371/journal.pone.0048023.g003
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within a pathway and the numbers of genes within these pathways.
This example serves to illustrate the relatively high significance
(compared to the standard of p = 0.05) for these events not
representing random occurrences. The over expressed ASPS-1
genes in these pathways consist of BUB1, TTK, BIRC5, CDC23,
KIF2C and RAD52, none of which appear in the pink sub-clade
of genes under expressed with respect to universal RNA. These
genes and their associated pathways represent cellular signals that
are both over expressed relative to universal RNA and these
expressions are greater than found in the ASPS-tissue samples.

The clade associated with the color black (DEND meta-clade
F, Table S2) has GSEA pathways comprised of chromatin
assembly or disassembly, protein kinase binding, kinase binding,
negative regulation of cell adhesion, DNA damage and integrity
checkpoints. The clade associated with the color green (DEND
meta-clade G) has GSEA pathways comprised of endoplasmic

reticulum and pathways associated with lipid, glycolipid and
alcohol metabolism. Genes associated with the cyan colored sub-
clade (DEND meta-clade I) represent the extremes of over
expression relative to universal RNA, and expression values much
greater when compared to the ASPS-tissue samples. All of these
GSEA pathways are related to the cell cycle and include the
pathway genes CHK1, RAD50 and RAD51L3. The genes
associated with the magenta colored sub-clade (meta-clade J) also
comprise genes that are highly over expressed with respect to
universal RNA and have higher expression in ASPS-1 when
compared to the ASPS-tissue samples. These GSEA pathways
include leukocyte chemotaxis and leukocyte migration, transmem-
brane receptor protein tyrosine kinase activity, transmembrane
receptor protein kinase activity, protein tyrosine kinase activity,
protein tyrosine kinase activity and KEGG renal cell carcinoma;
all containing the pathway genes MET and EPHA5. These latter

Figure 4. Top Panel, dendrogram for ASPS-1 gene expression. Clades are colored to identify samples associated with five meta-clade
memberships (DEND meta-clades F-J). DEND meta-clade members with gene expressions lower than their universal RNA are highlighted in pink.
Bottom Panel, ASPS-tissue versus ASPS-1 scatter plot where meta-clade memberships are color-coded to match the dendrogram displayed in the top
panel.
doi:10.1371/journal.pone.0048023.g004
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GSEA pathways suggest the involvement of chemokines and
tyrosine kinases, either in the etiology or diagnosis of ASPS [21]
or/and as potential therapeutic targets (Phase II Study of
Cediranib (AZD2171) in Patients With Alveolar Soft Part
Sarcoma, NCI-09-C-0192, NCT00942877).

These findings indicate that genes over expressed in the pooled
ASPS-tissue samples relative to ASPS-1, and over expressed with
respect to universal RNA, point to pathways related to wound
healing that include immune, chemokine and metabolic responses,
while genes associated with ASPS-1 and over expressed with
respect to universal RNA point to pathways involved in cellular
proliferation. Evident from these clustering steps is the association
of gene subsets, based only on differential gene expression, that are
related to different GSEA pathways. In the next section the
analysis will focus on the individual patient data, combined with
the RT-PCR measures of the ASPL-TFE3 fusion transcript in
these patients.

SOM Analysis
Self-organizing maps (SOMs) represent a powerful tool for

analyzing multi-dimensional, noisy data into a form that facilitates
visualization of clustering results. The upper left panel in Figure 5
displays the SOM (row dimension 20 column dimension 12 to
yield 240 clusters) generated from individual patient gene
expression measurements in ASPS-tissue (1244 genes 7 patients
2 replicates). The SOM has been colored in a gray scale identify
the similarity of data assigned to each SOM cluster when
compared to its nearest SOM neighbors (dark:most similar;
white:least similar). To facilitate comparisons of the SOM results
with the results derived from the earlier analysis of pooled patient
data (ASPS-tissue) versus ASPS-1, all the SOM clusters have been
used to generate a SOM meta-clustering of this data. Here the
representative cluster for each of the 240 SOM nodes provides
input for hierarchical clustering. A dendrogram of the SOM meta-
clusters is displayed in the upper right panel of Figure 5. This tree
has been arbitrarily clipped to display only ten meta-clades. The
SOM regions for each meta-clade are displayed as white
boundaries in the upper left panel. This result finds, for example,
that SOM meta-clades 6, 7 and 10 share similarity in their pattern

of gene expressions. Consistent with the SOM dendrogram, SOM
meta-clades 6, 7 and 10 are also nearest neighbors. The lower left
panel displays the patient gene expression data for these 1244
genes. The patient replicates appear as adjacent columns and
provide an indication of the reproducibility of these values. Data
from the seven patient tumors is ordered arbitrarily along the x-
axis. This gene expression data has been sorted from top to bottom
to correspond to the SOM meta-clade groupings appearing in the
upper panels. For example, SOM meta-clade 1 and SOM meta-
clade 3, adjacent branches in the SOM dendrogram, and SOM
neighbors, appear as rows 527–646 and rows 647–787, respec-
tively, in the display of the patient data. The patient data for these
genes’ expressions display a pattern, as, for example, with column
11–12, corresponding to the 6th patient’s measurements, having
relatively high gene expressions for rows 527–787, when compared
to the other patients’ data. In general, this patchwork appearance
serves as an illustration of the heterogeneity between patient
measurements, and as the basis for dividing these genes into
groups, each sharing a similar pattern across the patient samples.
This patchwork appearance lends further support to the premise
that a linear model may serve to capture patient-specific
differences in gene expressions for later comparisons with RT-
PCR data.

It is important to emphasize that the 1244 genes used for SOM
analysis were derived collectively from the ASPS-tissue (i.e. patient
pooled) and ASPS-1 data. Attempts to derive this set of genes by
sampling the tails of over and under expressed genes from only the
ASPS-tissue data were able to identify many of the over expressed
genes within this set of 1244, yet few of the under expressed genes.
Although not pursued in detail, the majority of these under
expressed genes appear in the lower left portion of ASPS-tissue
versus ASPS-1 scatterplots in Figure 2.

The lower right panel in Figure 5 displays a histogram of the
ratio of gene counts from the ASPS-tissue overexpressed genes to
the ASPS-1 overexpressed genes, determined for each SOM meta-
clade. Values above or below the horizontal dashed line
correspond to cases where the ASPS-tissue genes are in greater
or lesser abundance, respectively, when compared to the ASPS-1
gene set. The remarkable finding is that the pooled and individual
genes can be segregated into groups comprised of similar genes.
For example, SOM meta-clades 7, 6, 10, 3 and 5 include patient
records abundant in genes over expressed in ASPS-tissue samples
when compared to ASPS-1. These SOM meta-clades appear as a
diagonal band running midway through the SOM from the 10
o’clock to 4 o’clock position. Conversely, the SOM region
corresponding to instances where ASPS-1 gene expressions are
greater than ASPS-tissue gene expressions appear above and
below this diagonal region. This result provides motivation for
subjecting these packets of SOM clustered genes to GSEA
analysis, in the same manner as previously used for the pooled
patient gene sets versus ASPS-1 gene sets.

Genes in SOM meta-clades most abundant in ASPS-tissue
genes (SOM meta-clades 7, 6, 10, 3 and 5) yield the GSEA
pathways that, for the most part, recapitulate the results for the
pooled ASPS-tissue data. These pathways are dominated by
cellular processes involving the extracellular matrix and adhesion.
Table S3 lists these GSEA pathways. Genes in the remaining
SOM meta-clades find GSEA pathways consistent with those
found for the ASPS-1 data set. These pathways are dominated by
cell cycle and mitotic processes. Table S4 lists these GSEA
pathways. Noteworthy in these results is that gene subsets provided
for GSEA have not been segregated in any way other than to use
the individual patient data as input to SOM clustering. The
information contained within the individual patients’ gene

Table 1. GSEA results for DEND meta-clade H (red:pink) for
ASPS-1 over expressed genes relative to ASPS-tissue.

Name ID # genes P-val

red:pink DEND meta-clade H

Regulation of mitosis GO:0007088 4 3.88E-04

M phase GO:0000279 6 4.23E-04

Mitosis GO:0007067 5 6.85E-04

M phase of mitotic cell cycle GO:0000087 5 7.65E-04

Cell cycle phase GO:0022403 6 3.42E-03

Spindle GO:0005819. 3 4.02E-03

Regulation of cell cycle GO:0051726 6 4.42E-03

Cell cycle GO:0007049 8 5.12E-03

KEGG cell cycle Cell cycle 5 5.14E-03

Cell cycle process GO:0022402 6 5.91E-03

Column 1 provides a short description of the pathway, column 2 the pathway
identifier, column 3 the number of genes from ASPS-1 in this sub-clade that
occurs within each pathway, column 4 the statistical significance of this
occurrence.
doi:10.1371/journal.pone.0048023.t001
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expressions appears sufficient to identify ASPS-specific pathways
similar to those found from the pooled ASPS-tissue versus ASPS-1
data sets.

The next step in the analysis identifies mutual GSEA pathways
determined from the analysis of pooled patient (ASPS-tissue) and
cellular gene expression (ASPS-1) data versus the SOM meta-
clustering of the individual patient samples. The general premise
here is that the mutual appearance of selected pathways derived
from these two independent approaches will focus these pathways
and their associated pathway gene expressions into ASPS-specific
genetic signatures. Figure 6 displays a 3-dimensional histogram

for the co-occurrence of GSEA pathways (number count appears
as the Z-axis) in DEND meta-clades A-J (x-axis) and SOM meta-
clades 1–10 (y-axis). Twenty-nine GSEA pathways are found to
co-exist at least once within the 10 DEND meta-clades and 10
SOM meta-clades. The mutual pathways and their associated
gene subsets for these cases are listed in Table S5, ordered from
largest (n = 5) to smallest (n = 1) counts of mutual pathways. The
six instances where more than one common GSEA pathway exists
have their number counts at the top of each histogram. The genes
listed in the third column of Table S5 identify the gene subsets
defining each GSEA pathway. Asterisks identify pathway genes

Figure 5. Top left panel displays the SOM for the 1244 individual patient gene expressions from ASPS-tissue and ASPS-1 (1244
genes). SOM colors indicate the similarity of gene measurements between SOM clusters (dark: similar light:less similar). Dendrogram (clipped at 10
SOM meta-clades) from hierarchical clustering of SOM codebook vectors is displayed in the upper right panel. Corresponding SOM meta-clades are
identified on the SOM by the white boundary lines. Matching labels appear on the SOM regions and SOM dendrogram. Lower left panel displays the
gene expression measurements for the 1244 ASPS-tissue genes for 7 patients, done in replicate. Records are ordered from top to bottom from the left
to right meta-clades of the dendrogram. Record boundaries are: SOM meta-clade 7; rows 1–41, SOM meta-clade 6; rows 42–256, SOM meta-clade 10;
rows 257–340, SOM meta-clade 2; rows 341–425, SOM meta-clade 9; rows 426–526, SOM meta-clade 1; rows 527–646), SOM meta-clade 3; rows 647–
787, SOM meta-clade 5; rows 788–934, SOM meta-clade 8; rows 935–1143, SOM meta-clade 4; rows 1144–1244, Lower right panel displays the
histogram for the ratio of counts of genes in the ASPS-tissue set to counts of genes in the ASPS-1 set. Dashed horizontal line defines cases where
equal fractions of ASPS-tissue and ASPS-cell genes occur in a meta-clade. Here SOM meta-clades (7, 6, 10, 3 and 5) represent ASPS-tissue genes
greater in abundance than found for ASPS-1 genes.
doi:10.1371/journal.pone.0048023.g005
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found mutually from the two different methods of clustering
analysis.

These results find that parallel data analyses converge to a
mutual set of 29 GSEA pathways and 75 genes that characterize
this set of ASPS gene expression measurements. Cell-cycle related
processes represent a large share of these pathways, with the
finding of a small subset of genes in common to these pathways
(denoted with asterisks*), including; BUB1, CCNB1, KIF2C, IL8
and RAB51L3 (cell cycle) and MET, EPHA5, FLT1, NRP2 and
ACVR1C (receptor protein kinase pathways). Tumor stromal
pathways are also in evidence with the common genes including;
TLR4, TLR7, HLA-DRA, HLA-DQA1, CXCR4, FOS and
TGFB2 (immune surveillance and chemokine pathways) and NF2,
ITGA7, PGF, ITGA4, PDGFD and PARVA (focal adhesion).
These results suggest a connection between pathways related to
cell survival and pathways related to a supportive stromal
environment.

Incorporation of RT-PCR ASPL-TFE3 Fusion Data
The individual patient gene expression data can be analyzed

further with RT-PCR determinations of the ASPL-TFE3 fusion
transcript. The upper left panel in Figure 7 displays the 20612
SOM used earlier to analyze the PCA-derived 1244 differentially
expressed genes. The white boundary lines, associated with the
previously derived SOM meta-clades, subdivide the patient’s gene
expression data. The upper right panel in Figure 7 displays this
SOM, with its clusters now colored in a gray scale to indicate the
Pearson correlation coefficient (PCC) of the patient’s ASPL-TFE3
fusion transcript with patient’s gene expressions within each SOM
cluster. Here the SOM clusters are colored from most positive
(white) to most negative (black) correlations between the average of
patient gene expressions within a SOM cluster and the ASPL-
TFE3 fusion transcript. The most positively correlated region lies

in SOM meta-clade 5 and also corresponds with the SOM regions
most associated with the genes over expressed in the ASPS-tissue
compared to ASPS-1. This result supports the use of ASPS tissue
data as important for identifying ASPS-specific pathways and
genes. However, the second most positively correlated SOM
region overlaps portions of SOM meta-clades 3, 4 and 8, all of
which correspond to SOM regions where genes are over expressed
in ASPS-1 versus ASPS-tissue samples. In contrast, the SOM
region exhibiting the most negative correlation with the ASPL-
TFE3 fusion transcript data lies in SOM meta-clade 2, associated
with genes over expressed in the ASPS-tissue versus ASPS-1. The
second most negatively correlated SOM region corresponds to
SOM meta-clade 1; a region comprised mainly of genes over
expressed in the ASPS-1 samples versus ASPS-tissue samples.

Examples of individual correlations are displayed in the lower
panels of Figure 7; where the left and right plots display
negatively and positively correlated genes, respectively. As
expected, patient HGF gene expression is strongly negatively
correlated with the ASPL-TFE3 fusion transcript. Although not
shown here, RAB27A also shares this strong negative correlation;
both gene’s expression are known to be directly [22] or indirectly
[23] under the control of TFE3. FLT1, the fms-related tyrosine
kinase 1 (vascular endothelial growth factor/vascular permeability
factor receptor) member of the family of receptor tyrosine kinases
(RTKs) also displays a strong positive correlation with the ASPL-
TFE3 fusion transcript. This positive correlation has been the basis
for proposing anti-angiogeneic-based therapeutic strategies
[18,19]. The proto-oncogene MET, also known as hepatocyte
growth factor receptor, HGRF, is in the tyrosine kinase family of
oncogenes, and also is positively correlated with the ASPL-TFE3
fusion transcript. Both HGF and HGFR have been have been
proposed as targets for cancer therapy [24].

The convergent pathways and genes derived from this collective
ASPS data set, listed in Table S5, can be examined for cases

Figure 6. Three-dimensional histogram for count of pathways (pw cnt) shared from the GSEA analysis of gene expressions derived
from the patient pooled/ASPS-1 data (axis labels DEND meta-clade, with clade letters A–J) and the individual patient data (axis
labeled SOM meta-clades, with meta-clades numbered 1–10). Genes designated with an asterisk are common to pathways identified using
the ASPS-tissue: ASPS-1 data set and the individual patient dataset.
doi:10.1371/journal.pone.0048023.g006
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where the SOM meta-clades overlap with SOM meta-clades
found to be most correlated with the ASPL-TFE3 fusion transcript
data. Pathways extracted from genes associated with SOM meta-
clades 3, 4, 5, 8 and 9 are listed in Table 2. These ASPS-specific
pathways feature tyrosine-kinase activity, immune surveillance and
focal adhesion amongst those associated with gene expressions
most positively correlated with transcript levels. These pathways,
and their associated genes, represent potential ASPS therapeutic
targets.

Table 3 lists the results from extracting pathways associated
with negative ASPL-TFE3 gene correlations. The isolation of cell-
cycle related pathways represents a most unusual result. The
pathways associated with SOM meta-clade 1 and 7 are derived
from instances where their component genes are all over expressed
with respect to universal RNA and have their expression values
greatest in ASPS-1, when compared to the ASPS-tissue samples.

Apparently the cell cycle control imposed by TFE3 alone is
diminished by its fusion transcript, however the genetic compo-
nents of the cellular machinery needed for proliferation are
responding to signals directing cellular mitosis and meiosis.
Accordingly, these genes, albeit over expressed with respect to
universal RNA, are negatively correlated with the ASPL-TFE3
fusion transcript. Hence most of the necessary components exist to
perform cellular proliferation functions, but the transcriptional
directive from TFE3 appears to be absent.

Discussion

Collective analysis of patient ASPS and ASPS-1 gene expres-
sions and the patient-derived ASPL-TFE3 fusion transcript yielded
a consistent genetic picture of ASPS-specific pathways and their
associated genes. The cellular processes affected by the non-
reciprocal t(X;17) chromosomal translocation, that can be

Figure 7. Upper left panel displays SOM (20612) based on the 1244614 patient gene measurements. Colors represent the PCCs of the
ASPL-TFE3 fusion transcript values against the SOM codebook vectors for each cluster. These codebook vectors represent the best representative of
the gene expressions contained within a SOM cluster (typically 5–10 genes). White boundaries correspond to SOM meta-clades. Upper right panel
displays the same SOM image with the boundary line (white with black inlay) identifying clusters with the most significant positive PCC values (ASPL-
TFE3 fusion transcript versus patient gene expressions). The region scribed by this boundary encompasses most of SOM meta-clade 5, and includes
portions of SOM meta-clades 3, 4, 8 and 9. Lower panels plot patient ASPL-TFE3 fusion transcript to gene expressions for selected genes. Lower left
and right panels depict examples of negatively and positively correlated genes, respectively. Positive: FLT1:SOM meta-clade 8 MET:SOM meta-clade 9,
PGF SOM meta-clade 3, NBN SOM meta-clade 8. Negative: HGF:SOM meta-clade 2, BUB1:SOM meta-clade 1, RAD51L1:SOM meta-clade 7, TTK:SOM
meta-clade 1.
doi:10.1371/journal.pone.0048023.g007
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collectively linked to measures of gene expression derived
independently from ASPS patient tissue and an ASPS cell, identify
aberrant regulation of the cell-cycle and tissue stroma-related
adhesion pathways as ASPS genetic signatures. These pathways
largely reflect the nature of what is known about these tumor cells
and their behavior. Relating these pathways to the biology of
ASPS is an essential step towards understanding their roles in this
disease and proposing therapeutic strategies. An obvious first step
is to explore the occurrence of the 75 genes listed in Table S5
according to their chromosomal origins. Figure 8 displays a bar
chart for the count of these genes according to chromosome.

Noteworthy in this plot is the existence of 5 genes associated with
chromosome 17 and 2 genes with chromosome X (Table 4). The
genes within the same cytogenetic band as TFE3 (chr17q25)
include ARHGDIA and BIRC5, functioning, respectively, in
pathways related to cell adhesion and cell cycle. Consistent with
the observed negative correlation between TFE3 regulated gene
expressions and ASPL-TFE3 transcript levels, this analysis
identifies genes such as HGF, ARHGDIA and BIRC5, albeit at
a significance level of p,0.1. The appearance of BIRC5 on
cytogenetic band 17q25 and its negative correlation between
ASPL-TFE3 fusion transcript levels and patients’ gene expression,
clearly points to an important role of the cell cycle in ASPS, either
directly through BIRC5, or more generally through other genes
involved in the cell cycle. Table 4 and Table S5 both include the
GSEA cell cycle pathways of meiosis, meiotic cell cycle, meiotic
recombination and DNA recombination and the genes CHK1,
RAD50, RAD51L3 and RAD50L1. Amongst this list of genes is
the appearance of CHK1, which encodes a protein kinase
required for DNA damage checkpoint control; also found to be
over expressed in ASPS-1 relative to ASPS tissue. This checkpoint
control may be linked to the earlier described elevation in gene
expression for cell cycle genes, and to the arrested growth rate of
ASPS tumor cells. Recently CHK1 inhibitors have been proposed
as cancer therapeutics on the basis of their ability to activate cell
cycle checkpoints in p53 defective cancer cells [25]. Others have
proposed that the elevated levels of CHK1 in some cancers,
postulated to result from reduced capacity for its degradation,
could provide a selective advantage to cancer cells by conferring
chemo-resistance [26]. Ma et al. [25] and Reed and Altiok [27]
propose that CHK1 inhibition may release its checkpoint function,
thereby sensitizing tumor cells to anticancer agents. This
possibility, combined with the current analyses’ emphasis on the
role of cell cycle in ASPS, warrants further investigation for CHK1
inhibitors in the treatment of these chemo-resistant ASPS tumor
cells.

Other interesting genes implicated in these results are CCL4
and CDC6, located in the TFE3 neighboring cytogenetic band,
chr17q21, with cellular functions related to protein tyrosine kinase
activity and cell cycle. CCL4, also known as macrophage
inflammatory protein 1-b, is a regulator of macrophage migration
and signals through the G-protein coupled beta chemokine
receptor, CCR5. Protein kinases linked to this chemokine family
include the SRC kinase Lyn, PI3K, focal adhesion related kinase

Table 2. Convergent pathways where the SOM meta-clades overlap with SOM clades found to be most positively correlated with
the ASPL-TFE3 fusion transcript data.

SOM meta-clade Pathway

8 Protein tyrosine kinase activity

8 Transmembrane receptor protein kinase activity

8 Transmembrane receptor protein tyrosine kinase activity

8 DNA damage response signal transduction by p53 class mediator

5 Cellular morphogenesis during differentiation

5 KEGG intestinal immune network for IgA production

5 KEGG Leishmania infection

3 BIOCARTA cardiac EGF pathway

3 Focal adhesion

9 Focal adhesion

Pathways extracted from genes associated with SOM meta-clades 3, 5, 3 and 9.
doi:10.1371/journal.pone.0048023.t002

Table 3. Convergent pathways where the SOM meta-clades
overlap with SOM clades found to be most negatively
correlated with the ASPL-TFE3 fusion transcript data.

SOM meta-clade Pathway

1 KEGG cell cycle

1 Mitosis

1 M phase of mitotic cell cycle

1 regulation of cell cycle

1 regulation of mitosis

1 leukocyte chemotaxis

1 leukocyte migration

7 DNA recombination

7 meiosis I

7 meiotic cell cycle

7 meiotic recombination

6 interleukin 8 biosynthetic process

6 negative regulation of cell adhesion

2 alcohol metabolic process

10 BIOCARTA Toll pathway

10 KEGG pantothenate and CoA
biosynthesis

10 BIOCARTA ASHP pathway

Pathways are extracted from genes associated with SOM meta-clades 1, 7, 6, 2,
10.
doi:10.1371/journal.pone.0048023.t003
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Pyk2, and members of the MAPK family. siRNA gene silencing
demonstrated that chemotaxis requires activation of Pyk2, PI3K
p85, and Lyn, as well as MAPK ERK. MIP-1b activation of
CCR5 triggered translocation of Pyk2 and PI3K p85 from the
cytoplasm to co-localize with Lyn, at the plasma membrane, with
formation of a multi-molecular complex. In addition, arrestins,
also recruited to CCR5, impaired complex formation and
macrophage chemotaxis toward MIP-1b when down-regulated.
Together, these results identify a novel mechanism of chemokine
receptor regulation of chemotaxis linking CCR5 to multiple
downstream signaling molecules [28].

Localization of CCL4 to chromosome 17q21, raises a number
of interesting possibilities for future experiments. CCL4 is also a
member of the family of beta chemokines, and functions in
pathways associated with protein tyrosine kinase activity (see
Table 4). Recently, beta chemokine CCL5 neutralization has
been found to restrict cancer cell growth in colorectal cancer [29].
This study explored tumor-stromal communications that favor
tumor development by signaling growth factors, angiogenesis,
modulation of the ECM, and recruitment of additional stromal
cells as part of the immune evasion mechanisms of cancer. Colon
cancer promoters, which also correlate with tumor grade and

shorter patient survival, include VEGF, FGF and PDGF.
Increasing evidence supports a role of chemokines produced
within the tumor microenvironment in tumor pathogenesis [30–
33]. One study reports clinical efficacy when treating an ASPS
patient with interferon alpha 2a [34]; an effect possibly mediated
by the role of interferons in angiogenesis [35] or by the capacity of
interferons to activate specific signaling cascades involving
chemokines [36].

CCL4 is also a member of the family of beta chemokines that
may function in ASPS in ways similar to those observed for CCL5
in colon cancer. Recent studies find activation of phosphoinositide
3-kinases by the CCR4 ligand [37], a result similar to that
reported above for CCL5. A comparison of CCL5 patient
expression with ASPL-TFE3 fusion transcript levels finds a strong
positive correlation (r = 0.78 p = 0.0036), placing it above the
observed positive correlation for FLT1. CDC6, also on chr17q21,
has expression values positively correlated with ASPL-TFE3 fusion
transcript, albeit with a significance value above the standard
threshold (r = 0.19, p = 0.12). RAD51L3, also located in chr17q21,
functions in pathways related to cellular meiosis and exhibits a
strong negative correlation with the ASPL-TFE3 fusion transcript.
Collectively these results can be used to hypothesize experimental
modulation of pathways associated with genes found on chromo-
some 17 as a means to identify potential therapeutic targets in the
treatment of ASPS.

Many of the results presented here are consistent with recent
reports describing targeted therapies for the treatment of soft tissue
sarcomas [38,39]. Stacchiotti et al. [40] found direct evidence for
an antitumor effect from treatment of advanced ASPS with
sunitinib. Their antiproliferative and biochemical assays found
sunitinib to markedly impair ASPS cell growth and switch off
PDGFBR. The results presented here (Table S5) find a role for
platelet-derived growth factor proteins in focal adhesion pathways.
Their study [40] further confirmed a physical association between
PDGFBR targets in ASPS cells, as well as MET-ligand dependent
activation. A recent report [41] finds that the MET inhibitor
ARQ197 yielded a response in a phase II study of clear cell
sarcoma. These examples, and others (see the review by Taylor et
al. [42]) are consistent with the findings here of the importance of
protein tyrosine kinase pathways, and in particular the role of
MET, as ASPS-specific pathways and an ASPS-specific gene,
respectively (Table S5). Early studies found an association
between certain sarcomas and insulin growth factor (IGF)
signaling [43,44]. Recent developments now find that IGF and
insulin receptors facilitate sufficient cross-talk between various
pathways to consider them as important anticancer targets. In

Figure 8. Bar chart for number of genes per chromosome.
Genes are selected from Table S5 (n = 75 genes).
doi:10.1371/journal.pone.0048023.g008

Table 4. Details for genes associated with Chromosomes 17 and X.

Gene Cytoband GSEA p-value Gene Description GSEA Pathway Description

ARHGDIA chr17q25 5.53e-4 Rho GDP dissociation inhibitor (GDI) alpha Negative regulation of cell adhesion

BIRC5 chr17q25 5.53e-4 baculoviral IAP repeat-containing 5 (survivin) Kegg cell cycle, mitosis, M-phase of
mitotic cycle, regulation of cell cycle

CCL4 chr17q21 1.34e-3 chemokine (C-C motif) ligand 4 Protein tyrosine kinase activity

CDC6 chr17q21 1.34e-3 CDC6 cell division cycle 6 homolog (S. cerevisiae) Kegg cell cycle

RAD51L3 chr17q11 RAD51-like 3 (S. cerevisiae) Meiosis_I, meiotic cell cycle

KAL1 chrxp22 4.41e-5 Kallmann syndrome 1 sequence Cellular morphogenesis during
differentiation

TLR7 chrxp22 4.41e-5 Toll-like receptor 7 Interleukin 8 biosynthetic process

Columns include a) HUGO name, b) chromosome position, c) GSEA probability for genes in same cytoband, d) brief description of gene, and e) GSEA pathway.
doi:10.1371/journal.pone.0048023.t004

Gene Expression Analysis of ASPS Patient Data

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e48023



support of this claim, a mechanism has been proposed linking the
translocation associated with Ewings sarcoma with the IGF
binding protein 3 (IGFBP3) promoter, reducing IGFBP3 produc-
tion and effectively up-regulating IFG1 [45–47]. The results
reported here (Table S5) implicate IGF1 as an ASPS-specific
target with an important role in focal adhesion pathways. Finally,
the earlier mention here of cediranib (see section GSEA Results for
clustered subsets of pooled ASPS-tissue and ASPS-1 genes:), can now be
updated with the finding of numerous objective remissions,
apparently related to its role as a protein tyrosine kinase inhibitor
of VEGF and PDGFR [48]. While the reported role of cediranib
appears to involve inhibition of angiogenesis, the analysis here
points to an additional role in focal adhesion as well as the
possibility of interaction with chemokines that affect tyrosine
kinase activity.

In summary, the results from bioinformatics mining of the
collective ASPS data raise a number of testable hypotheses
regarding a limited set of cellular pathways as potential therapeutic
targets in the treatment of ASPS. The linear model introduced
here to detect important genetic signals is generally applicable to
instances where heterogeneous tissue samples are used for gene
expression profiling.

Supporting Information

Figure S1 GSEA output for genes (y-axis) and pathways
(x-axis). Black boxes indicate occurrence of 2 or more genes in a
GSEA pathway. GSEA results are derived from the 542 filtered
genes above the 1st PC (See Figure 2). These genes are over
expressed in ASPS-tissue relative to ASPS-1.
(DOC)

Figure S2 GSEA output for genes (y-axis) and pathways
(x-axis). Black boxes indicate occurrence of 2 or more genes in a
GSEA pathway. GSEA results are derived from the 702 filtered
genes below the 1st PC (See Figure 2). These genes are over
expressed in ASPS-1 relative to ASPS-tissue.
(DOC)

Table S1 GSEA Pathways and Pathway Genes for the DEND
meta-clades derived from the clustering of ASPS-tissue genes (See
Figure 3).
(DOC)

Table S2 GSEA Pathways and Pathway Genes for the DEND
meta-clades derived from the clustering of ASPS-1 genes (See
Figure 4).
(DOC)

Table S3 GSEA pathways for genes associated with SOM meta-
clades 7, 6, 10, 3 and 5.
(DOC)

Table S4 GSEA pathways for genes associated with SOM meta-
clades 2,9,1,8 and 4.
(DOC)

Table S5 Results for convergent pathways derived from the
pooled ASPS-1 and ASPS-tissue analysis and the SOM-based
analysis of individual patient gene expressions. Column 1 lists the
meta-clade identifiers (DEND meta-clade: SOM meta-clade),
column 2 lists the GSEA pathways and column 3 lists the pathway
genes identified from each analysis.
(DOC)
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