The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Keywords: hypoxia, cancer, metastasis, angiogenesis, treatment resistance
https://www.ncbi.nlm.nih.gov/pmc/articl ... po=3.24675
The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy
New research, clinical trial outcomes, etc.
Return to “Medical Publications”
Jump to
- Welcome to CureASPS.org!
- ↳ Guest Book
- ↳ Forum Issues and Suggestions
- News and Updates
- ↳ Personal Stories and Updates
- ↳ Success Stories
- ↳ Rest In Peace
- ↳ Anonymous Patient Updates
- ↳ Chinese group news
- ↳ Medical Publications
- ↳ Other Publications
- ↳ Sarcoma Meetings and Conferences
- ASPS Clinical Trials
- ↳ Other Clinical Trials
- ↳ COMPLETED - ARQ 197 Clinical Trial
- ↳ COMPLETED - Dana Farber Vaccine Clinical Trial (GVAX)
- ↳ Dasatinib
- ↳ Alisertib
- ↳ Cediranib
- ↳ Anlotinib
- ↳ Immune checkpoint inhibitors (ICI)
- ↳ Axitinib and Pembrolizumab (Keytruda) in Miami, US
- ↳ TECENTRIQ (atezolizumab) by Genentech
- ↳ Pfizer's PF-06801591
- ↳ Durvalumab+Tremelimumab at MDACC
- Symptoms and Diagnostics
- ↳ Symptoms
- ↳ Scan Types and Follow-Up
- ↳ Molecular Studies
- ↳ Pathology results
- Primary Tumor Treatment
- ↳ Resection
- ↳ Treatment of Non-Resectable Primary Tumor
- ↳ Radiation
- Systemic Treatment
- ↳ TKI
- ↳ Sutent (sunitinib)
- ↳ Pazopanib
- ↳ Сabozantinib (Cometriq)
- ↳ Sorafenib
- ↳ Chemotherapy
- ↳ Metronomic chemotherapy
- ↳ Temozolomide (Temodar)
- ↳ Side effects of systemic treatments
- ↳ Interferon alpha
- ↳ Immune checkpoint inhibitors ICI (PD-1 and PD-L1 targeting drugs)
- ↳ Keytruda
- ↳ Opdivo
- ↳ TECENTRIQ (atezolizumab)
- ↳ Toxicity, problems and potentiation strategies
- ↳ Treatment response criteria and evaluation/scanning problems/rare cases
- ↳ treatment discontinuation/re-treatment
- Metastatic Disease Treatment
- ↳ Local treatment modalities
- ↳ cryoablation
- ↳ Side effects/complications of the local ablations
- ↳ Radiosurgery
- ↳ Microwave ablation
- ↳ High intensity focused ultrasound (HIFU)
- ↳ Lung Metastases
- ↳ Laser assisted surgery
- ↳ Brain Metastases
- ↳ Bone Metastases
- ↳ Other Metastases
- ↳ Abdominal Metastases
- ↳ Liver metastases
- ↳ Heart Metastases
- ↳ Spinal metastases
- ↳ Adrenal metastases
- ↳ Pancreatic metastases
- Living with ASPS
- ↳ Insurance Coverage
- ↳ Second opinion from a sarcoma center
- ↳ Finanical assistance
- ↳ Diet and lifestyle
- ↳ Related studies
- ↳ Pain management
- ↳ Travel assistance