PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers
Abstract
BACKGROUND. PD-L1 expression and tumor mutational burden (TMB) have emerged as important biomarkers of response to immune checkpoint inhibitor (ICI) therapy. These biomarkers have each succeeded and failed in predicting responders for different cancer types. We sought to describe the PD-L1 expression landscape across the spectrum of ICI-responsive human cancers, and to determine the relationship between PD-L1 expression, TMB, and response rates to ICIs.
METHODS. We assessed 9887 clinical samples for PD-L1 expression and TMB.
RESULTS. PD-L1 expression and TMB are not significantly correlated within most cancer subtypes, and they show only a marginal association at the tumor sample level (Pearson’s correlation 0.084). Across distinct tumor types, PD-L1 expression and TMB have nonoverlapping effects on the response rate to PD-1/PD-L1 inhibitors and can broadly be used to categorize the immunologic subtypes of cancer.
CONCLUSION. Our results indicate that PD-L1 expression and TMB may each inform the use of ICIs, point to different mechanisms by which PD-L1 expression regulates ICI responsiveness, and identify new opportunities for therapeutic development.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482991/
PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers
Non-ASPS articles which could be relevant.
Return to “Other Publications”
Jump to
- Welcome to CureASPS.org!
- ↳ Guest Book
- ↳ Forum Issues and Suggestions
- News and Updates
- ↳ Personal Stories and Updates
- ↳ Success Stories
- ↳ Rest In Peace
- ↳ Anonymous Patient Updates
- ↳ Chinese group news
- ↳ Medical Publications
- ↳ Other Publications
- ↳ Sarcoma Meetings and Conferences
- ASPS Clinical Trials
- ↳ Other Clinical Trials
- ↳ COMPLETED - ARQ 197 Clinical Trial
- ↳ COMPLETED - Dana Farber Vaccine Clinical Trial (GVAX)
- ↳ Dasatinib
- ↳ Alisertib
- ↳ Cediranib
- ↳ Anlotinib
- ↳ Immune checkpoint inhibitors (ICI)
- ↳ Axitinib and Pembrolizumab (Keytruda) in Miami, US
- ↳ TECENTRIQ (atezolizumab) by Genentech
- ↳ Pfizer's PF-06801591
- ↳ Durvalumab+Tremelimumab at MDACC
- Symptoms and Diagnostics
- ↳ Symptoms
- ↳ Scan Types and Follow-Up
- ↳ Molecular Studies
- ↳ Pathology results
- Primary Tumor Treatment
- ↳ Resection
- ↳ Treatment of Non-Resectable Primary Tumor
- ↳ Radiation
- Systemic Treatment
- ↳ TKI
- ↳ Sutent (sunitinib)
- ↳ Pazopanib
- ↳ Сabozantinib (Cometriq)
- ↳ Sorafenib
- ↳ Chemotherapy
- ↳ Metronomic chemotherapy
- ↳ Temozolomide (Temodar)
- ↳ Side effects of systemic treatments
- ↳ Interferon alpha
- ↳ Immune checkpoint inhibitors ICI (PD-1 and PD-L1 targeting drugs)
- ↳ Keytruda
- ↳ Opdivo
- ↳ TECENTRIQ (atezolizumab)
- ↳ Toxicity, problems and potentiation strategies
- ↳ Treatment response criteria and evaluation/scanning problems/rare cases
- ↳ treatment discontinuation/re-treatment
- Metastatic Disease Treatment
- ↳ Local treatment modalities
- ↳ cryoablation
- ↳ Side effects/complications of the local ablations
- ↳ Radiosurgery
- ↳ Microwave ablation
- ↳ High intensity focused ultrasound (HIFU)
- ↳ Lung Metastases
- ↳ Laser assisted surgery
- ↳ Brain Metastases
- ↳ Bone Metastases
- ↳ Other Metastases
- ↳ Abdominal Metastases
- ↳ Liver metastases
- ↳ Heart Metastases
- ↳ Spinal metastases
- ↳ Adrenal metastases
- ↳ Pancreatic metastases
- Living with ASPS
- ↳ Insurance Coverage
- ↳ Second opinion from a sarcoma center
- ↳ Finanical assistance
- ↳ Diet and lifestyle
- ↳ Related studies
- ↳ Pain management
- ↳ Travel assistance