Epidermal growth factor receptor exposed to cigarette smoke is aberrantly activated and undergoes perinuclear trafficking
Medical Definition of perinuclear
: situated around or surrounding the nucleus of a cell perinuclear structures.
Abstract cont..
The epidermal growth factor (EGF) receptor (EGFR) is implicated in a number of cancers, and its oncogenic potential is linked to its inability to undergo clathrin-mediated endocytosis and lysosomal degradation (1, 2). The process of EGFR down-regulation is highly dependent on the ability of the E3 ubiquitin ligase, c-Cbl, to bind the receptor, thereby facilitating its entry into the clathrin-coated pits and lysosomal sorting (3–6). Recent evidence has also demonstrated the requirement of Grb2 in recruiting the RING domain of c-Cbl to the EGFR and for subsequent receptor entry into the clathrin-mediated endocytic pathway (7).
Our previous studies have demonstrated that oxidative stress induced by H2O2 causes the aberrant phosphorylation of the EGFR, where Tyr-1045, the c-Cbl binding site, is not phosphorylated and c-Cbl binding is abrogated (8). Therefore, under H2O2-induced oxidative stress, the EGFR is not only activated, but it is also stabilized due to its inability to enter the clathrin-mediated endocytic and lysosomal degradation pathways (8, 9). To further investigate the physiological relevance of oxidant-induced activation and stabilization of the EGFR, we focused our studies on cigarette smoke.
Among the plethora of deleterious chemicals found in cigarette smoke, H2O2 has been reported to be a significant constituent of the gas phase (10). We thus hypothesized that if mainstream cigarette smoke does indeed contain high amounts of H2O2, the effects of exposure on EGFR activation and stability should parallel those of H2O2 alone. To test this hypothesis, we utilized human airway epithelial cells in culture as a highly simplified model system in which to expose mainstream cigarette smoke. We examined EGFR phosphorylation, in association with c-Cbl, ubiquitination, and trafficking as determinants of receptor activation and stability. We also assessed the ability of cigarette smoke to activate downstream survival and proliferative signaling molecules such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2). The results herein demonstrate that the effects of cigarette smoke do indeed parallel those of H2O2, where the EGFR is aberrantly phosphorylated and stabilized due to the loss of c-Cbl binding and receptor ubiquitination. Moreover, the Akt and ERK1/2 pathways are also activated by cigarette smoke, thereby contributing to cellular events that may ultimately lead to hyperplasia and tumorigenesis.
Does secondhand smoke contain harmful chemicals?
Yes. Many of the harmful chemicals that are in the smoke inhaled by smokers are also found in secondhand smoke (1, 3, 6, 7), including some that cause cancer (1, 3, 7, 8).
These include:
Benzene
Tobacco-specific nitrosamines
Benzo[α]pyrene
1,3–butadiene (a hazardous gas)
Cadmium (a toxic metal)
Formaldehyde
Acetaldehyde
Many factors affect which chemicals and how much of them are found in secondhand smoke. These factors include the type of tobacco used in manufacturing a specific product, the chemicals (including flavorings such as menthol) added to the tobacco, the way the tobacco product is smoked, and—for cigarettes, cigars, little cigars, and cigarillos—the material in which the tobacco is wrapped (1–3, 7).
https://www.cancer.gov/about-cancer/cau ... fact-sheet