P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future
2020
The p53 field was born from a marriage of the techniques of cancer virus research and immunology. Over the past 40 years, it has followed the path of cancer research. Now cancer treatments are turning to immunotherapy, and there are many hints of the role of the p53 protein in both the regulation of the innate immune system and as an antigen in adaptive immune responses. The p53 gene and protein are part of the innate immune system, and play an important role in infectious diseases, senescence, aging, and the surveillance of repetitive DNA and RNAs. The mutant form of the p53 protein in cancers elicits both a B-cell antibody response (a tumor antigen) and a CD-8 killer T-cell response (a tumor-specific transplantation antigen). The future will take the p53-immune response field of research into cancer immunotherapy, autoimmunity, inflammatory responses, neuro-degeneration, aging, and life span, and the regulation of epigenetic stability and tissue regeneration. The next 40 years will bring the p53 gene and its proteins out of a cancer focus and into an organismic and environmental focus.
Keywords: Tp53 and p53; cancer biology; epigenetics and development; immunology; life span; senescence; the adaptive immune response; the innate immune response.
https://pubmed.ncbi.nlm.nih.gov/31952115/
P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future
Re: P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future
1. Introduction
Forty years ago, four research groups in London, Paris, New York City/Bethesda, MD, and Princeton, NJ, USA, discovered the p53 protein in a variety of cancerous cells and normal cells employing antisera from animals carrying SV40 virus-induced tumors or spontaneously-derived tumors [1,2,3,4]. These observations began a set of studies on the role of p53 in cancers that has led to the conclusion that p53 mutations are the most common feature of human cancers. Over 40 years of research publications and 17 meetings dedicated to the p53 gene and its protein, cancer biology has been the subject under discussion. But it could have happened another way, focusing instead upon role of p53 in the immune response and immunology, with research largely being carried out by immunologists. Lloyd Olds was a noted tumor immunologist, David Lane had just completed a PhD in the laboratory of an immunologist, and Arnold Levine taught immunology courses at Princeton University, so the authors of the first papers might have pursued the role of the p53 protein in adaptive and innate immunity, and not only in cancer biology. This article celebrates forty years of p53 research and pays tribute to the possibility that, in the future, immunologists will be attracted to p53 research efforts. In that spirit, this review will explore the idea that p53 is part of the innate immune system, and that one day, p53 cancer antigens will be targets of immunotherapy. After all, if 50% of human cancers have p53 mutations, and if the immune system recognizes foreign tumor antigens targeting them for cellular rejection, these two lines of research will make a good marriage.
2. Tumor Antigens and the Adaptive Immune System
During the 1950s and 1960s, a number of DNA viruses that were able to cause tumors in rodents and humans were isolated, e.g., SV40, polyoma, several of the human adenoviruses, some human papilloma viruses, and human Epstein Barr virus [5]. In every case, the viral genome or portions of the viral genome persisted in the tumor cells, being either integrated into a cellular chromosome or as a plasmid. For each of these viruses, a portion of that viral genome was expressed as m-RNAs, which were translated into viral proteins [6]. In all of these cases, except for the Epstein-Barr virus, these viral proteins were demonstrated to be involved in the initiation and maintenance of tumor formation [5,6,7,8,9]. Because these viral proteins were not encoded for in the host genome, the immune system recognized them as foreign and produced antibodies directed against them. These antibodies became primary tools to detect viral oncoproteins, which were classified as tumor antigens (TA). In some cases, animals immunized with these virally-induced tumors were able to reject a subsequent inoculation of tumor tissue. The antigens mediating tumor rejection were tumor antigens that were termed “tumor-specific transplantation antigens” (TSTA) [10]. The adaptive immune response composed of macrophages and dendritic cells presenting an antigen, CD-4 helper Th-2 T-cells, and the B-cells producing IgG antibodies (TA) and CD-4 helpers Th-1 T-cells that signal to CD-8 killer T-cells (TSTA), responded to these viral encoded antigens. Thus, the adaptive immune response was very active against these viral encoded antigens.
In addition to these viral antigens expressed in tumors, several fetal antigens, such as alpha fetoprotein (liver cancer) and the carcino-embryonic antigen (colon cancer) were expressed only in actively replicating fetal cells, and not in adult tissue, but were reexpressed in the cancerous tissue. These antigens also elicited antibodies directed against the fetal antigens produced in the tumor.
With this background, in 1979, four different research groups probing quite different sets of questions uncovered the existence of the p53 protein, employing antisera from tumor-bearing animals [1,2,3,4]. DeLeo and his colleagues immunized and inoculated isogenic mice with a spontaneously-transformed and tumorigenic cell line, and employed the antisera from these mice to detect the p53 protein in extracts of the tumorigenic cell line. Kress employed the sera from SV40 tumor-bearing animals to detect both the SV40 large T-antigen and a second protein, p53. Lane and Crawford detected both the SV40 T antigen and p53, and found that upon dilution of the antisera, the ratio of T-antigen and the p53 protein remained constant, suggesting that these two proteins formed a complex in solution and were co-immuno-precipitated together. Linzer and Levine inoculated hamsters with the SV40 virus and induced tumors in these animals. The sera were employed to detect the p53 protein in SV40-infected and -transformed mouse and monkey cell extracts. The same p53 protein (based upon peptide maps) was found in SV40-transformed mouse cells and murine cancer cells not produced by a virus. The p53 protein was detected at much lower levels in uninfected normal cells. The results in these four publications suggested that the SV40 tumor antigen, which was known to be responsible for the initiation and maintenance of transformation and tumor formation, bound to cellular protein p53 and increased its concentration compared with levels in normal cells. Cancer cells not produced by any virus also expressed high levels of the p53 protein, whereas normal cells had much lower levels. In addition, the cellular protein p53 became immunogenic in cancer cells, and so CD-4 Th2 T-cells had receptors for the protein and acted as helpers to permit p53-specific antibody production by B-cells.
Linzer and his colleagues [11] then demonstrated that temperature-sensitive mutations in the SV40 gene that encoded the T-antigen regulated the levels of the p53 protein in virus-infected and -transformed cells in a temperature-sensitive fashion. At the permissive temperature, the cells were transformed and T-antigen p53 complexes were formed with high levels of the p53 protein. At nonpermissive temperatures, where the SV40 T-antigen does not function, the cells were normal and p53 levels were very low. Crawford and his colleagues showed that about 10% of women with breast cancers produced antibodies against the human p53 protein [12]. Datasets of human antibodies directed against the p53 protein from people with a variety of cancers demonstrated that about 30% of individuals with cancers have p53 protein detectable antibodies [13]. These antibodies appear to be quite specific to p53, and are associated with cancers that have p53 missense mutations. When the epitopes on the p53 protein where the p53 antibodies bound were mapped, the antibodies tended to react with the N- and C-termini of p53 protein. This is not where the missense mutations in the p53 protein are located. About 50% of human cancers have p53 mutations, and most of those are missense mutations that map to the DNA-binding domain of the p53 protein. Many of these mutant p53 proteins fail to bind to DNA and no longer function as a transcription factor. The p53 transcription factor transcribes the MDM-2 gene, which produces a protein, i.e., the E3 ubiquitin ligase of the p53 protein. This produces an autoregulatory loop where the p53 protein promotes the transcription of the MDM-2 gene, which, in turn, produces the MDM-2 protein that polyubiquitinates the p53 protein and helps to degrade it [14]. Thus, p53 missense mutations fail to transcribe the MDM-2 gene and to degrade the mutant p53 protein. As a result, mutant p53 proteins are at high levels in transformed or cancerous cells, and at much lower levels in normal cells with a wild-type p53 gene. This may help to explain why only mutant p53 proteins result in antibody production. Peptides produced from these proteins are at high levels and have the affinity to bind to Class-2 (HLA) and CD-4 T cell receptors (TCRs), helping B-cells make IgG antibodies. The epitopes for these antibodies do not have to recognize the missense mutation; they recognize the higher concentrations of p53 peptides from the N- and C-terminal ends of the protein. Raising the levels of a cellular protein (self) in a cell can trigger an immune response.
Clearly, there is a good adaptive B-cell response to a mutant p53 protein. Is there a CD-8 killer T-cell response directed against the p53 antigen? Balachandran and his colleagues [15] have explored the CD-8 T cell responses in human cancer patients with pancreatic cancers. They employed peptide antigens derived from mutated oncogenes and tumor suppressor genes (neoantigens) presented by class 1 HLA receptors in cancer cells or associated macrophages produced by individuals who were long-term survivors (10 years or more) of pancreatic cancers. Normally, about 93–95% of patients diagnosed with pancreatic cancer live less than five years. About 3–7% of these patients are alive at ten years or more after diagnosis. In this study, patients who had survived pancreatic cancer for ten years or more were studied. These patients were treated with surgery and chemotherapy. No immunotherapy was employed. The DNA from their original tumors was sequenced and the oncogene and tumor suppressor gene mutations were identified. The CD-8 T-cell receptor sequences were also obtained from tissue sections of the original tumors. Knowing the HLA types of the class 1 receptors from each patient made it possible to estimate the off-rate constant of a peptide from its class 1 receptor using the NETMHC algorithm [15,16]. This was multiplied by the degree of homology of the peptide sequence to a known antigen derived from the microbiome, as listed in the immune epitope database (IEDB) [15,16]. The idea behind this was that a prior exposure of the immune system to a cross-reacting antigen provided by an infectious disease would prime the immune response to a tumor antigen. This calculation produced presumptive neoantigens that were derived from mutated oncogenes and tumor suppressor genes in the pancreatic cancers. Most pancreatic cancers have both RAS mutations and p53 mutations. Ten years after diagnosis, seven patients had their blood drawn to obtain peripheral blood leukocytes. The monocytes and dendritic cells were allowed to attach to a solid surface. They were incubated with nine amino acid-length peptides that were found in the mutant proteins of oncogenes and tumor suppressor genes calculated to bind well (i.e., a NETMHC off constant of below 500nM) to the class 1 receptor on those cells. These target cells were then incubated with CD-8 T cells to determine whether these T-cells would recognize the antigen presented. The CD-8 T-cells killing the target cells then replicate in response to engaging an antigen. All of these cells had their T-cell receptors sequenced at the start of the experiment, day zero, and 21 days after the incubation of the T-cells with the target cells. The number of T-cell receptor sequence DNA reads gives the number of cells, and therefore, the degree of replication of a T-cell clone after 21 days of incubation. The most common antigen found to stimulate the CD-8 T-cells from long-term survivors was muc16, a cellular encoded protein that is neither an oncogene nor a tumor suppressor gene, but which might protect the cells from an immune response. Interestingly, one patient, a 10.5 year survivor, had a CD-8 T cell clone in her blood ten years after diagnosis that was directed against the peptide that had the p53 missense mutation, E191K (an E to K amino acid change at codon 271). The sequence of the T-cell receptor that bound to this p53 mutant peptide could also be found in the paraffin-embedded tissue section of the original tumor ten years earlier, and was at a frequency of 0.11% of the T-cells detected in that original pancreatic tumor. The p53 mutant peptide was homologous to epitopes found in the IEDB, making it a good candidate as a tumor specific neoantigen or a TSTA [17] that cross reacts with an infectious agent. P53 mutant peptides were also reported to be good neoantigens for both CD-4 and CD-8 T-cell receptors from cancer patients by Rosenberg and his colleagues [18].
Rather clearly, the mutant p53 protein is recognized by the adaptive immune response in patients with cancers. It might one day be found to play a role in checkpoint therapy or even in CAR-T cell therapy. Selected p53 mutations, with the right HLA type, could exert enough immune responses to keep a tumor under control and permit a patient to become a long-term survivor. One might even begin to carefully test mutant p53 peptides as vaccines for selected cancers with the right HLA type and a specific p53 mutation. We might be concerned about an autoimmune response against the wild-type p53 protein; low levels of the wild-type p53 protein in normal cells might avoid such an autoimmune reaction.
This will become a new area for p53 researchers over the next few years. In these examples, the recognition of the p53 epitopes by the class 2 receptors, CD-4 helper, and B-cells (at the N- and C-terminal peptides) is clearly different from the recognition of the p53 epitope (at the mutational site) by the class 1 receptors, CD-4 TH-1, and CD-8 killer T cell receptors (TCR). It is not surprising that the two arms of the adaptive immune system react with distinct p53 protein epitopes with very different affinity constants (antibodies commonly have nano-molar affinities, whereas CD-8 TCR’s have micro-molar affinities).
Forty years ago, four research groups in London, Paris, New York City/Bethesda, MD, and Princeton, NJ, USA, discovered the p53 protein in a variety of cancerous cells and normal cells employing antisera from animals carrying SV40 virus-induced tumors or spontaneously-derived tumors [1,2,3,4]. These observations began a set of studies on the role of p53 in cancers that has led to the conclusion that p53 mutations are the most common feature of human cancers. Over 40 years of research publications and 17 meetings dedicated to the p53 gene and its protein, cancer biology has been the subject under discussion. But it could have happened another way, focusing instead upon role of p53 in the immune response and immunology, with research largely being carried out by immunologists. Lloyd Olds was a noted tumor immunologist, David Lane had just completed a PhD in the laboratory of an immunologist, and Arnold Levine taught immunology courses at Princeton University, so the authors of the first papers might have pursued the role of the p53 protein in adaptive and innate immunity, and not only in cancer biology. This article celebrates forty years of p53 research and pays tribute to the possibility that, in the future, immunologists will be attracted to p53 research efforts. In that spirit, this review will explore the idea that p53 is part of the innate immune system, and that one day, p53 cancer antigens will be targets of immunotherapy. After all, if 50% of human cancers have p53 mutations, and if the immune system recognizes foreign tumor antigens targeting them for cellular rejection, these two lines of research will make a good marriage.
2. Tumor Antigens and the Adaptive Immune System
During the 1950s and 1960s, a number of DNA viruses that were able to cause tumors in rodents and humans were isolated, e.g., SV40, polyoma, several of the human adenoviruses, some human papilloma viruses, and human Epstein Barr virus [5]. In every case, the viral genome or portions of the viral genome persisted in the tumor cells, being either integrated into a cellular chromosome or as a plasmid. For each of these viruses, a portion of that viral genome was expressed as m-RNAs, which were translated into viral proteins [6]. In all of these cases, except for the Epstein-Barr virus, these viral proteins were demonstrated to be involved in the initiation and maintenance of tumor formation [5,6,7,8,9]. Because these viral proteins were not encoded for in the host genome, the immune system recognized them as foreign and produced antibodies directed against them. These antibodies became primary tools to detect viral oncoproteins, which were classified as tumor antigens (TA). In some cases, animals immunized with these virally-induced tumors were able to reject a subsequent inoculation of tumor tissue. The antigens mediating tumor rejection were tumor antigens that were termed “tumor-specific transplantation antigens” (TSTA) [10]. The adaptive immune response composed of macrophages and dendritic cells presenting an antigen, CD-4 helper Th-2 T-cells, and the B-cells producing IgG antibodies (TA) and CD-4 helpers Th-1 T-cells that signal to CD-8 killer T-cells (TSTA), responded to these viral encoded antigens. Thus, the adaptive immune response was very active against these viral encoded antigens.
In addition to these viral antigens expressed in tumors, several fetal antigens, such as alpha fetoprotein (liver cancer) and the carcino-embryonic antigen (colon cancer) were expressed only in actively replicating fetal cells, and not in adult tissue, but were reexpressed in the cancerous tissue. These antigens also elicited antibodies directed against the fetal antigens produced in the tumor.
With this background, in 1979, four different research groups probing quite different sets of questions uncovered the existence of the p53 protein, employing antisera from tumor-bearing animals [1,2,3,4]. DeLeo and his colleagues immunized and inoculated isogenic mice with a spontaneously-transformed and tumorigenic cell line, and employed the antisera from these mice to detect the p53 protein in extracts of the tumorigenic cell line. Kress employed the sera from SV40 tumor-bearing animals to detect both the SV40 large T-antigen and a second protein, p53. Lane and Crawford detected both the SV40 T antigen and p53, and found that upon dilution of the antisera, the ratio of T-antigen and the p53 protein remained constant, suggesting that these two proteins formed a complex in solution and were co-immuno-precipitated together. Linzer and Levine inoculated hamsters with the SV40 virus and induced tumors in these animals. The sera were employed to detect the p53 protein in SV40-infected and -transformed mouse and monkey cell extracts. The same p53 protein (based upon peptide maps) was found in SV40-transformed mouse cells and murine cancer cells not produced by a virus. The p53 protein was detected at much lower levels in uninfected normal cells. The results in these four publications suggested that the SV40 tumor antigen, which was known to be responsible for the initiation and maintenance of transformation and tumor formation, bound to cellular protein p53 and increased its concentration compared with levels in normal cells. Cancer cells not produced by any virus also expressed high levels of the p53 protein, whereas normal cells had much lower levels. In addition, the cellular protein p53 became immunogenic in cancer cells, and so CD-4 Th2 T-cells had receptors for the protein and acted as helpers to permit p53-specific antibody production by B-cells.
Linzer and his colleagues [11] then demonstrated that temperature-sensitive mutations in the SV40 gene that encoded the T-antigen regulated the levels of the p53 protein in virus-infected and -transformed cells in a temperature-sensitive fashion. At the permissive temperature, the cells were transformed and T-antigen p53 complexes were formed with high levels of the p53 protein. At nonpermissive temperatures, where the SV40 T-antigen does not function, the cells were normal and p53 levels were very low. Crawford and his colleagues showed that about 10% of women with breast cancers produced antibodies against the human p53 protein [12]. Datasets of human antibodies directed against the p53 protein from people with a variety of cancers demonstrated that about 30% of individuals with cancers have p53 protein detectable antibodies [13]. These antibodies appear to be quite specific to p53, and are associated with cancers that have p53 missense mutations. When the epitopes on the p53 protein where the p53 antibodies bound were mapped, the antibodies tended to react with the N- and C-termini of p53 protein. This is not where the missense mutations in the p53 protein are located. About 50% of human cancers have p53 mutations, and most of those are missense mutations that map to the DNA-binding domain of the p53 protein. Many of these mutant p53 proteins fail to bind to DNA and no longer function as a transcription factor. The p53 transcription factor transcribes the MDM-2 gene, which produces a protein, i.e., the E3 ubiquitin ligase of the p53 protein. This produces an autoregulatory loop where the p53 protein promotes the transcription of the MDM-2 gene, which, in turn, produces the MDM-2 protein that polyubiquitinates the p53 protein and helps to degrade it [14]. Thus, p53 missense mutations fail to transcribe the MDM-2 gene and to degrade the mutant p53 protein. As a result, mutant p53 proteins are at high levels in transformed or cancerous cells, and at much lower levels in normal cells with a wild-type p53 gene. This may help to explain why only mutant p53 proteins result in antibody production. Peptides produced from these proteins are at high levels and have the affinity to bind to Class-2 (HLA) and CD-4 T cell receptors (TCRs), helping B-cells make IgG antibodies. The epitopes for these antibodies do not have to recognize the missense mutation; they recognize the higher concentrations of p53 peptides from the N- and C-terminal ends of the protein. Raising the levels of a cellular protein (self) in a cell can trigger an immune response.
Clearly, there is a good adaptive B-cell response to a mutant p53 protein. Is there a CD-8 killer T-cell response directed against the p53 antigen? Balachandran and his colleagues [15] have explored the CD-8 T cell responses in human cancer patients with pancreatic cancers. They employed peptide antigens derived from mutated oncogenes and tumor suppressor genes (neoantigens) presented by class 1 HLA receptors in cancer cells or associated macrophages produced by individuals who were long-term survivors (10 years or more) of pancreatic cancers. Normally, about 93–95% of patients diagnosed with pancreatic cancer live less than five years. About 3–7% of these patients are alive at ten years or more after diagnosis. In this study, patients who had survived pancreatic cancer for ten years or more were studied. These patients were treated with surgery and chemotherapy. No immunotherapy was employed. The DNA from their original tumors was sequenced and the oncogene and tumor suppressor gene mutations were identified. The CD-8 T-cell receptor sequences were also obtained from tissue sections of the original tumors. Knowing the HLA types of the class 1 receptors from each patient made it possible to estimate the off-rate constant of a peptide from its class 1 receptor using the NETMHC algorithm [15,16]. This was multiplied by the degree of homology of the peptide sequence to a known antigen derived from the microbiome, as listed in the immune epitope database (IEDB) [15,16]. The idea behind this was that a prior exposure of the immune system to a cross-reacting antigen provided by an infectious disease would prime the immune response to a tumor antigen. This calculation produced presumptive neoantigens that were derived from mutated oncogenes and tumor suppressor genes in the pancreatic cancers. Most pancreatic cancers have both RAS mutations and p53 mutations. Ten years after diagnosis, seven patients had their blood drawn to obtain peripheral blood leukocytes. The monocytes and dendritic cells were allowed to attach to a solid surface. They were incubated with nine amino acid-length peptides that were found in the mutant proteins of oncogenes and tumor suppressor genes calculated to bind well (i.e., a NETMHC off constant of below 500nM) to the class 1 receptor on those cells. These target cells were then incubated with CD-8 T cells to determine whether these T-cells would recognize the antigen presented. The CD-8 T-cells killing the target cells then replicate in response to engaging an antigen. All of these cells had their T-cell receptors sequenced at the start of the experiment, day zero, and 21 days after the incubation of the T-cells with the target cells. The number of T-cell receptor sequence DNA reads gives the number of cells, and therefore, the degree of replication of a T-cell clone after 21 days of incubation. The most common antigen found to stimulate the CD-8 T-cells from long-term survivors was muc16, a cellular encoded protein that is neither an oncogene nor a tumor suppressor gene, but which might protect the cells from an immune response. Interestingly, one patient, a 10.5 year survivor, had a CD-8 T cell clone in her blood ten years after diagnosis that was directed against the peptide that had the p53 missense mutation, E191K (an E to K amino acid change at codon 271). The sequence of the T-cell receptor that bound to this p53 mutant peptide could also be found in the paraffin-embedded tissue section of the original tumor ten years earlier, and was at a frequency of 0.11% of the T-cells detected in that original pancreatic tumor. The p53 mutant peptide was homologous to epitopes found in the IEDB, making it a good candidate as a tumor specific neoantigen or a TSTA [17] that cross reacts with an infectious agent. P53 mutant peptides were also reported to be good neoantigens for both CD-4 and CD-8 T-cell receptors from cancer patients by Rosenberg and his colleagues [18].
Rather clearly, the mutant p53 protein is recognized by the adaptive immune response in patients with cancers. It might one day be found to play a role in checkpoint therapy or even in CAR-T cell therapy. Selected p53 mutations, with the right HLA type, could exert enough immune responses to keep a tumor under control and permit a patient to become a long-term survivor. One might even begin to carefully test mutant p53 peptides as vaccines for selected cancers with the right HLA type and a specific p53 mutation. We might be concerned about an autoimmune response against the wild-type p53 protein; low levels of the wild-type p53 protein in normal cells might avoid such an autoimmune reaction.
This will become a new area for p53 researchers over the next few years. In these examples, the recognition of the p53 epitopes by the class 2 receptors, CD-4 helper, and B-cells (at the N- and C-terminal peptides) is clearly different from the recognition of the p53 epitope (at the mutational site) by the class 1 receptors, CD-4 TH-1, and CD-8 killer T cell receptors (TCR). It is not surprising that the two arms of the adaptive immune system react with distinct p53 protein epitopes with very different affinity constants (antibodies commonly have nano-molar affinities, whereas CD-8 TCR’s have micro-molar affinities).
Debbie
Re: P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future
3. The Innate Immune Response, Infectious Diseases, and p53
P53 was discovered because it formed a complex with the SV40 tumor antigen [2,3,4]. The retinoblastoma protein (Rb) also forms a protein complex with the SV40 tumor antigen [19], and in both cases, the viral oncoprotein T-antigen inactivates the functions of each of the tumor suppressor genes. The SV40 T-antigen inactivates the Rb protein to move the virus-infected cell from the G-0 or G-1 phase of the cell cycle into the S-phase, so as to have the cell synthesize all the precursors and substrates for optimal viral (and cellular) DNA replication. When the T-antigen moves a cell into the S-phase without stimulation by growth factors and the synthesis of cyclins, that should be observed as a stress by p53, which would then be activated as a transcription factor, and p53 would kill the virus-infected cell, limiting viral replication. The virus responds by inactivating p53 before it can kill the cell. All of the small DNA tumor viruses (SV40, adenoviruses [20], and papilloma viruses [8,9] contain viral tumor antigens that inactivate Rb and p53 [21]. Interestingly the p53 protein is targeted for inactivation by many viruses that form tumors, or even those that do not. Both DNA and RNA virus-infected cells signal a number of different stress signals that activate p53-mediated transcription, resulting in the killing of cells unless the virus successfully inactivates the p53 protein functions. Because of this, almost every successful virus has developed a way to inactivate p53. This means that the p53 gene and protein are part of the cellular defenses termed “innate immune responses”. In addition, there are bacteria that target p53 in cells for inactivation. Helicobacter pylori attaches to gastric epithelial cells of the stomach and inserts its Cag A protein into the cell, which results in the activation of the AKT protein kinase. This protein kinase phosphorylates the MDM-2 protein and activates it, enhancing its E3 ligase activity and inactivating p53 [22]. H. pylori is known to be associated with gastric cancers. The role of p53 in preventing viral and bacterial infections and diseases, and the role of infectious agents in countering p53 activity, open up new avenues of research. For example, the drug nutlin is known to block the MDM-2 protein from binding to p53 and inactivating it. Could nutlin become an antibiotic for H. pylori inactivation of p53? Yes, the treatment of H. pylori-infected gastric cells with nutlin liberates p53 from inhibition and kills the bacterial-infected cells [23]. Thus, nutlin could become a novel antibiotic. The role of the innate immune response and p53 in protecting the host from infectious diseases will be an important area of the p53 research of the future.
P53 was discovered because it formed a complex with the SV40 tumor antigen [2,3,4]. The retinoblastoma protein (Rb) also forms a protein complex with the SV40 tumor antigen [19], and in both cases, the viral oncoprotein T-antigen inactivates the functions of each of the tumor suppressor genes. The SV40 T-antigen inactivates the Rb protein to move the virus-infected cell from the G-0 or G-1 phase of the cell cycle into the S-phase, so as to have the cell synthesize all the precursors and substrates for optimal viral (and cellular) DNA replication. When the T-antigen moves a cell into the S-phase without stimulation by growth factors and the synthesis of cyclins, that should be observed as a stress by p53, which would then be activated as a transcription factor, and p53 would kill the virus-infected cell, limiting viral replication. The virus responds by inactivating p53 before it can kill the cell. All of the small DNA tumor viruses (SV40, adenoviruses [20], and papilloma viruses [8,9] contain viral tumor antigens that inactivate Rb and p53 [21]. Interestingly the p53 protein is targeted for inactivation by many viruses that form tumors, or even those that do not. Both DNA and RNA virus-infected cells signal a number of different stress signals that activate p53-mediated transcription, resulting in the killing of cells unless the virus successfully inactivates the p53 protein functions. Because of this, almost every successful virus has developed a way to inactivate p53. This means that the p53 gene and protein are part of the cellular defenses termed “innate immune responses”. In addition, there are bacteria that target p53 in cells for inactivation. Helicobacter pylori attaches to gastric epithelial cells of the stomach and inserts its Cag A protein into the cell, which results in the activation of the AKT protein kinase. This protein kinase phosphorylates the MDM-2 protein and activates it, enhancing its E3 ligase activity and inactivating p53 [22]. H. pylori is known to be associated with gastric cancers. The role of p53 in preventing viral and bacterial infections and diseases, and the role of infectious agents in countering p53 activity, open up new avenues of research. For example, the drug nutlin is known to block the MDM-2 protein from binding to p53 and inactivating it. Could nutlin become an antibiotic for H. pylori inactivation of p53? Yes, the treatment of H. pylori-infected gastric cells with nutlin liberates p53 from inhibition and kills the bacterial-infected cells [23]. Thus, nutlin could become a novel antibiotic. The role of the innate immune response and p53 in protecting the host from infectious diseases will be an important area of the p53 research of the future.
Debbie
Mutations in the p53 tumor suppressor protein are associated with the development of autoimmune diseases
https://www.google.com/search?q=p53+mut ... s-wiz-serp
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187775/p53 (transformation-related protein 53) is part of a sequence-specific transcription factor family also including p63 and p73 [1]. The protein is expressed at low concentrations in various tissues while it is upregulated in damaged, tumoral or inflamed tissues
Debbie